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Part I

This report documents the work that has been undertaken so far for estimating and forecast-

ing linear rational expectations models of the economy when agents and econometricians

share the same imperfect (or partial) information.

1 Summary of State of the Art

There are two further parts of this report and a suite of programs. Part II entitled ’Partial

Information Implementation in Dynare’ is the backbone of the software, while Part III is a

paper written using the newly developed software.

Part II first describes an algorithm for converting a linearized model of the economy

expressed in Sims form

A0Yt+1,t +A1Yt = A2Yt−1 +Bεt (1)

with agents’ and econometricians’ measurements given by

mt = LYt + vt (2)

into a model expressed in Blanchard-Kahn form:[
zt+1

xt+1,t

]
=

[
A11 A12

A21 A22

][
zt

xt

]
+

[
G

0

]
εt+1 (3)

with agents’ measurements given by

mt =
[
K1 K2

] [ zt

xt

]
+ vt (4)



Surprisingly (for the author) the algorithm for making this conversion is original, or at least

has never before been documented.

The document then provides solutions to this, with representations of the impulse re-

sponse functions, covariances, autocovariances and correlation matrix.

It also provides the formulae for calculating the likelihood function for a given parameter

set using a variant of the Kalman filter suitable for the RE forward-looking case.

Part III, entitled ’Endogenous Persistence in an Estimated New Keynesian Model under

Imperfect Information’ is an application of the software to evaluate the importance of partial

information for parameter estimation and impulse response matching for a US dataset of

macro variables.

The suite of programs are based on programs that are currently available in Dynare, so

that they run within Dynare in much the same way. The only change is that the modfile

requires the additional commands:

options .usePartInfo=1;

options .use k order=0;

The programs have been subjected to rigorous testing and are almost ready for distri-

bution. The tests are as follows:

1. Calculation of the likelihood function for a simple model with one backward-looking

and one forward-looking variable. These match the calculation using a spreadsheet

to 7 significant figures.

2. Testing of impulse response functions under partial information when in fact there is

full information. These have been compared with impulse response functions gener-

ated using the standard Dynare package, and they are correct to 7 significant figures.

3. Comparison of the likelihood function when there is full information to the likelihood

function generated by the standard Dynare package. These match to 7 significant

figures.

The model for item 1 is the analytical example of Section 12 below. The model for

items 2 and 3 above is given by

πt =
β

1 + βγ
Etπt+1 +

γ

1 + βγ
πt−1 +

(1− βξ)(1− ξ)

(1 + βγ)ξ
mct +mstott (5)

mct = munt −muct − at + (1− α)nt + ϵmc,t (6)

munt =
1

1− hc
γg

(ct −
hc
γg

ct−1) +
wd

1− wd
nt +muct; (7)

muct =
(1− ρ)(1− σ)− 1

1− hc
(ct −

hc
γg

ct−1)−
wdρ(1− σ)

1− wd
nt (8)
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muct+1 = muct − (rt − πt+1) + ϵt (9)

yt = cyct + (1− cy)gt (10)

nt = (yt − at)/α (11)

rt = ρrrt−1 + (1− ρr)θpπt+1 + ϵe,t (12)

gt = ρggt−1 + εg,t (13)

at = ρaat−1 + εa,t (14)

mst = ρmsmst−1 + εms,t (15)

mstott = mst + εm,t (16)

Under partial information, for testing purposes, it was assumed that the measured variables

are {π, y, r, g, a,ms,mstot}. Inspection of the equations shows that this is equivalent to

having full information. The software is then used to calculate impulse response functions,

and in addition the model is simulated, and the likelihood calculated. In both cases, there

was a match between these and the model using standard Dynare software.

2 Further Work

There are still a number of items that need to be addressed before the software is ready for

general distribution.

1. Incorporation of current best estimates Yt,t into the model. An example of this might

be when firms set wages based on best current estimates of the technology shock, or

when there is an interest rate rule based on best current estimates of the output gap.

We are awaiting directions on this from the authors of Dynare.

2. Incorporation of more general measurements; for example observations of the term

structure of interest rates requires measurements of the form (rt+rt+1,t+..+rt+T,t)/(T+

1). This requires work on the parser by the authors of Dynare.

3. Currently the partial information software only permits one lag and one lead. We

shall be extending this to any number of lags and leads as in standard Dynare.

4. There is as yet no variance decomposition for forecasts, but this will be added.

5. At the moment the new software requires its own Matlab subdirectory. We intend to

ensure that the software will sit in the same Matlab subdirectory as standard Dynare.
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Part II

Partial Information Implementation in

Dynare

3 Introduction

The aim of this document is to describe an algorithm for turning the state space setup of

Dynare into one that is suitable for obtaining the partial information setup that conforms

to that of Pearlman et al. (1986). The state space setup for Dynare is based on writing an

RE system as:

A0Yt+1,t +A1Yt = A2Yt−1 +But (17)

where A0 is not of full rank and ut is a vector containing instruments wt and shocks

εt. Currently estimation within Dynare assumes that agents have full information about

the system, so that a calculation is done which solves (17) under full information. The

estimation step then assumes that econometricians have only a limited information set,

and processes this via the Kalman filter to obtain the likelihood function for a given set of

parameters. In reality, agents too have a partial information set (which may or may not

coincide with that of the econometricians) given by

mt = LYt + vt (18)

where typically there is no observation error (vt = 0) and L picks out most of the economic

variables, typically excluding capital stock, Tobin’s q and shocks.

The Pearlman et al. (1986) setup is given by[
zt+1

xt+1,t

]
=

[
A11 A12

A21 A22

][
zt

xt

]
+

[
C

0

]
εt+1 +

[
D1

D2

]
wt (19)

with agents’ measurements given by

mt =
[
K1 K2

] [ zt

xt

]
+ vt (20)

and these can be solved together to yield a reduced-form system. This can then be processed

via the Kalman filter to obtain the likelihood function as above.

The next section describes an algorithm for converting the state space (17), (18) under

partial information to the form (19), (20).
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4 Conversion to Pearlman et al. (1986) Setup

In order to reduce the amount of notation we impose a particular way of incorporating

shocks into the system. Suppose a particular shock m̄t affects an equation of the system,

where m̄t+1 = ρm̄t + ūt+1. Redefine mt = m̄t+1, ut = ūt+1, so that now the relevant

equation of the system is affected by mt−1, and the law of motion of the shock is described

within the matrices A1, A2, B. This makes no difference to the Kalman filter below or

to system estimation, but means that for simulation purposes, a shock to ut at time 0 will

have an effect that is diminished by ρ compared with a shock to ūt at time 0.

To repeat, all shocks m̄t to the system at time t are dated as though they were mt−1.

The procedure for conversion to a form suitable for filtering is then as follows:

1. Obtain the singular value decomposition for matrix A0: A0 = UDV T , where U, V are

unitary matrices. Assuming that only the first m values of the diagonal matrix D are

non-zero, we can rewrite this as A0 = U1D1V
T
1 , where U1 are the first m columns of

U , D1 is the first m×m block of D and V T
1 are the first m rows of V T .

2. Multiply (17) by D−1
1 UT

1 , which yields

V T
1 Yt+1,t +D−1

1 UT
1 A1Yt = D−1

1 UT
1 A2Yt−1 +D−1

1 UT
1 But (21)

Now define xt = V T
1 Yt, st = V T

2 Yt, and use the fact that I = V V T = V1V
T
1 + V2V

T
2

to rewrite this as:

xt+1,t +D−1
1 UT

1 A1(V1xt + V2st) = D−1
1 UT

1 A2(V1xt−1 + V2st−1) +D−1
1 UT

1 But (22)

3. Multiply (17) by UT
2 which yields

UT
2 A1Yt = UT

2 A2Yt−1 + UT
2 But (23)

which can be rewritten as

UT
2 A1(V1xt + V2st) = UT

2 A2(V1xt−1 + V2st−1) + UT
2 But (24)

4. Typically UT
2 A1V2 is invertible, which means that we can rewrite (22) and (24) as

I 0 0

0 I 0

F 0 I




st

xt

xt+1,t

 =


G11 G12 −G13

0 0 I

G31 G32 −G33




st−1

xt−1

xt

+


H1

0

H3

ut (25)

where

G11 = (UT
2 A1V1)

−1UT
2 A2V2 G12 = (UT

2 A1V1)
−1UT

2 A2V1 G13 = (UT
2 A1V1)

−1UT
2 A1V2

(26)

5



G21 = D−1
1 UT

1 A2V2 G22 = D−1
1 UT

1 A2V1 G23 = D−1
1 UT

1 A1V2 (27)

H1 = (UT
2 A1V1)

−1UT
2 B H3 = D−1

1 UT
1 B F = D−1

1 UT
1 A1V2 (28)

which can be further rewritten as
st

xt

xt+1,t

 =


G11 G12 −G13

0 0 I

G31 − FG11 G32 − FG12 −G33 + FG13




st−1

xt−1

xt

+


H1

0

H3 − FH1

ut

(29)

5. The measurements mt = MYt + vt can be written in terms of the states as mt =

M(V1xt + V2st) + vt. To write the system in a form which corresponds to that of

Pearlman et al. (1986) we need to write the measurements in terms of the forward-

looking variables xt and in terms of the backward-looking variables st−1, xt−1. We

do this by substituting for st from (29); but this introduces a term in ut into the

expression, and Pearlman et al. (1986) assume that shock terms in the dynamics

and in the measurements are uncorrelated with one another. To remedy this, we

incorporate εt into the predetermined variables, but we can retain wt as it stands.

Defining 
H1

0

H3 − FH1

ut =


P1

0

P3

 εt +


N1

0

N3

wt (30)

we may rewrite the dynamics and measurement equations in the form:
εt+1

st

xt

xt+1,t

 =


0 0 0 0

P1 G11 G12 −G13

0 0 0 I

P3 G31 − FG11 G32 − FG12 −G33 + FG13




εt

st−1

xt−1

xt

+


I 0

0 N1

0 0

0 N3


[

εt+1

wt

]

(31)

mt =
[
LV2P1 LV2G11 LV2G12 LV1 − LV2G13

]


εt

st−1

xt−1

xt

+ LV2N1wt + vt (32)

Thus the setup is as required, with the vector of predetermined variables given by [ε′t s
′
t−1 x

′
t−1]

′,

and the vector of jump variables given by xt. Note that there is an issue not covered by

Pearlman (1992), namely that the instrument wt is part of the measurement equation; if we

assume that the instruments are observed, then there is no problem to modify the theory.

There is also a minor issue that the states of the system are not readily identifiable, as

they will be linear combinations of the identifiable variables, which may make debugging

of errors more problematic.
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5 Passing the Model to ACES

The model setup in this form is passed from Dynare to ACES where it is in Form 2:[
zt+1

Etxt+1

]
= A

[
zt

xt

]
+Dwt +

[
C

0

]
ut+1 (33)

Yt + E2

[
zt

xt

]
+ E5wt = 0 (34)

where wt are the instruments and ut are the shocks. Note that in ACES notation, B =

I, AB = 0, E1 = I, E4 = 0, E3 = 0.

For the partial information setup we also require the measurements (18):

mt = LYt + vt (35)

N.B. There is one difference here, namely that there is a shock vt to the measurement

Yt. This shock vt could also be incorporated into the state vector, by having an additional

predetermined variable vt+1. Also Yt plays a different role here from what it usually does

in ACES. In ACES, it represents static relationships that are included in the dynamics,

whereas here Yt represents what is observed by agents and policymakers.

The matrices above then correspond to those of the previous section via:

A =


0 0 0 0

P1 G11 G12 −G13

0 0 0 I

P3 G31 − FG11 G32 − FG12 −G33 + FG13

 D =


0

N1

0

N3

 C =


I

0

0

0


(36)

E2 = −
[
V2H1 V2G11 V2G12 V1 − V2G13

]
E5 = −V2N1 (37)

6 Impulse Response Functions

Full Information Case:

It is easy to see that the impulse response functions can be calculated from

zt+1 = (A11 −A12N)zt + Cut+1 xt = −Nzt Yt = −E2

[
zt

xt

]
(38)

where [
N I

] [ A11 A12

A21 A22

]
= ΛU

[
N I

]
(39)
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Partial Information Case: First rewrite mt as:

mt =
[
K1 K2

] [ zt

xt

]
+ vt (40)

The reduced-form solution is then given by:

System : zt+1 = Fzt + (A− F )z̃t

+(F −A)PHT (HPHT + V )−1(Hz̃t + vt) + Cut+1 (41)

xt = −Nzt + (N −A−1
22 A21)z̃t

−(N −A−1
22 A21)PHT (HPHT + V )−1(Hz̃t + vt) (42)

Innovations : z̃t+1 = Az̃t −APHT (HPHT + V )−1(Hz̃t + vt) + Cut+1 (43)

Measurement : mt = Ezt + (H − E)z̃t + vt

−(H − E)PHT (HPHT + V )−1(Hz̃t + vt)

= Ezt,t−1 + (EPHT + V )(HPHT + V )−1(Hz̃t + vt) (44)

where F = A11−A12N A = A11−A12A
−1
22 A21 E = K1−K2N H = K1−K2A

−1
22 A21

V is the covariance matrix of the measurement errors, and P is the solution of the Riccati

equation given by

P = APAT −APHT (HPHT + V )−1HPAT + CUCT (45)

and U is the covariance matrix of the shocks to the system.

Note that to obtain the impulse response for the underlying variables Yt we use the

relationship

Yt = V1xt + V2st (46)

Noting that st = [0 I 0]zt+1, it follows that we may write

Yt = V1xt +

[
0 V2 0

](
Fzt + (A− F )z̃t + (F −A)PHT (HPHT + V )−1(Hz̃t + vt)

)
(47)

or more simply

Yt =

[
0 V2 V1

]
zt+1 (48)

6.1 Covariances and Autocovariances for the Partial Information Case

Pearlman et al. (1986) show that

cov

[
z̃t

zt

]
=

[
P P

P P +M

]
≡ P0 (49)
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whereM satisfies

M = FMF T + FPHT (HPHT + V )−1HPF T (50)

If the dimension of the vector Yt is n, define Ω0 as the bottom right n×n matrix of (P+M).

Then it follows that

cov(Yt) = [ V2 V1 ]Ω0

[
V T
2

V T
1

]
≡ R0 (51)

To calculate the autocovariances, define

Γ =

[
A(I − PHT (HPHT + V )−1H) 0

(A− F )(I − PHT (HPHT + V )−1H) F

]
(52)

Then the sequence of auto-covariance matrices of Yt are defined as follows:

E

([
z̃t+k

zt+k

]
,

[
z̃t

zt

])
≡ Pk = ΓkP0 = ΓPk−1 (53)

Defining Ωk as the bottom right n× n matrix of Pk, it follows that

cov(Yt+k, Yt) = E(Yt+kY
T
t ) = [ V2 V1 ]Ωk

[
V T
2

V T
1

]
≡ Rk (54)

These correspond to the matrices gamma y defined at the bottom of page 41 of the

Dynare User Guide. These are then use to generate autocorr, the autocorrelation functions

of the variables. Thus the autocorrelation function of the ith element of Y is given by the

sequence (R1)ii
(R0)ii

, (R2)ii
(R0)ii

, (R3)ii
(R0)ii

, ....

In addition the correlation matrix of the Yt variables is defined as

Corr = ∆R0∆
T where ∆ = diag(

√
(R0)11,

√
(R0)22,

√
(R0)33, ...) (55)

7 Likelihood function calculation

Here we assume that there are no policy instruments wt and that the system is saddlepath

stable.

The Kalman filtering equation is given by

zt+1,t = Fzt,t−1 + FPtH
T (EPtH

T + V )−1et (56)

where et = mt − Ezt,t−1

Pt+1 = APtA
T + U −APtH

T (HPtH
T + V )−1HPtA

T (57)

the latter being a time-dependent Ricatti equation.
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The period-t likelihood function is standard:

2lnL = −
∑

lndet(cov(et)−
∑

eTt (cov(et))
−1et (58)

where

cov(et) = (EPtH
T + V )(HPtH

T + V )−1(HPtE
T + V ) (59)

Following Pearlman et al. (1986), the system is initialised at

z1,0 = 0 P1 = P +M (60)

where P is the steady state of the Riccati equation above, and M is the solution of the

Lyapunov equation

M = FMF T + FPHT (HPHT + V )−1HPF T (61)

8 Extension to the case of Expectations of Current Variables

Suppose that expectations (or best estimates) of current variables are included in agents’

decision-making and measurements. Then a general setup will be of the form

A0Yt+1,t +A1Yt = A2Yt−1 +A3Yt,t +But mt = LYt +MYt,t + vt (62)

To get this into Blanchard-Kahn format, we follow the same procedures as above with Yt,t

as a member of the exogenous variables, and end up with a representation of the form[
zt+1

Etxt+1

]
=

[
A11 A12

A21 A22

][
zt

xt

]
+

[
J11 J12

J21 J22

][
zt,t

xt,t

]
+

[
C

0

]
εt+1 (63)

mt =
[
K1 K2

] [ zt

xt

]
+

[
R1 R2

] [ zt,t

xt,t

]
+ vt (64)

Then all the equations above for filtering, likelihood calculation, IRFs are identical, with

the following altered definitions:

F = A11 + J11 − (A12 + J12)N E = K1 +R1 − (K2 +R2)N (65)

[
N I

] [ A11 + J11 A12 + J12

A21 + J21 A22 + J22

]
= ΛU

[
N I

]
(66)
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Part III

Endogenous Persistence in an Estimated

DSGE Model under Imperfect

Information

Presented at the annual CDMA Conference, 2009, University of St Andrews, 2–4 September.

Paul Levine, University of Surrey

Joseph Pearlman, London Metropolitan University

George Perendia, London Metropolitan University

Bo Yang, University of Surrey

Abstract

Our paper makes both a methodological and substantive contribution to the macroeco-

nomic literature on imperfect information. The methodological contribution is the pro-

vision of a general tool for estimating DSGE models by Bayesian Maximum-likelihood

methods under very general information assumptions on the part of private agents. Our

substantive contribution is an application to a standard New Keynesian model where

we compare the standard approach, that assumes an informational asymmetry between

private agents and the econometrician, with an assumption of informational symmetry.

For the former private agents observe all state variables including shocks, whereas the

econometrician only uses only data for output, inflation and interest rates. For the

latter both agents have the same imperfect information set and this corresponds to

what we term the ‘informational consistency principle’. We find that in terms of model

posterior probabilities, impulse responses, second moments and autocorrelations, the

assumption of informational symmetry significantly improves the model fit to data.

JEL Classification: C11, C52, E12, E32.

Keywords: Imperfect Information, DSGE Model, Bayesian Estimation

9 Introduction

A large recent literature has relaxed the extreme information assumptions of standard ra-

tional expectations in what are now referred to as Dynamic Stochastic General Equilibrium



(DSGE) models. There are many approaches on offer ranging from those that stay within

the conventional rational expectations paradigm to behavioural alternatives. In the former

category are a number of refinements are on offer that assume that agents are not able to

perfectly observe states that define the economy. Thus Pearlman et al. (1986) propose a

general framework for introducing information limitations at the point agents form expecta-

tions. Pearlman (1992), Svensson and Woodford (2001) and Svensson and Woodford (2003)

use this framework to study optimal monetary policy. Collard and Dellas (2004), Collard

and Dellas (2006) (discussed below) investigate empirical issues associated with imperfect

information. The ‘Rational Inattention’ literature that includes Mankiw and Reis (2002),

Sims (2005), Adam (2007), Luo and Young (2009), Luo (2006)) and Reis (2009) fits into this

agenda. The basic idea is that agents can process information subject to a constraint that

places an upper bound on the information flow. These studies assume homogeneous agents

with a common information set, or a simple form of aggregation across staggered informa-

tion up-dating; the examination of diverse agents with diverse information sets goes back

to Townsend (1983) and have been recently developed by Woodford (2003) and Pearlman

and Sargent (2003).

A more drastic deviation from rational expectations is provided by the statistical ra-

tional learning literature pioneered by Evans and Honkapohja (2000). This introduces a

specific form of bounded rationality in which utility-maximizing agents make forecasts in

each period based on standard econometric techniques such as least squares. In many cases

this converges to a rational expectations equilibrium. All these refinements contrast with

the drastic behavioural alternative offered by the very recent ‘Animal Spirits’ approach (Ak-

erlof and Shiller (2009), DeGrauwe (2009)), the latter paper proposing a radical alternative

to a standard New Keynesian model with rational expectations.

At the same time the formal estimation of DSGE models by Bayesian methods has

become standard.1 However, as Levine et al. (2007a) first point out, most of this DSGE

estimation makes asymmetric information assumptions where perfect information about

past shocks is available to the economic agents, but not to the econometricians. Although

perfect information on idiosyncratic shocks may be available to economic agents, it is im-

plausible to assume that they have full information on economy-wide shocks. It therefore

makes sense to address empirically alternative information assumptions in order to assess

whether parameter estimates are consistent across these assumptions and whether these

alternatives lead to a better model fit.

In this paper we stay within the conventional rational expectations framework but relax

the extreme perfect information assumptions for the private sector. We focus on a fairly

standard New Keynesian (NK) macro-model, and make the assumption that either agents

1See Fernandez-Villaverde (2009) for an excellent review.
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are better informed than the econometricians (the standard asymmetric information case

in the estimation literature) or that they both have only the same imperfect information

available, and that there is informational symmetry. We utilize the solution in the latter

case obtained for a completely general linear rational expectations model by Pearlman et al.

(1986).

The symmetric information assumption is the informational counterpart to the “cog-

nitive consistency principle” proposed in Evans and Honkapohja (2009) which holds that

economic agents should be assumed to be about as smart as good economists. Whilst we

make greater cognitive demands on both economic agents and the economists in sticking

with rational (model-consistent) expectations, our assumption that agents have no more

information than the economist constructing and estimating the model amounts to what

we term the informational consistency principle (ICP).2 Certainly the ICP seems plausible

– a central question is whether it adds realism to our model in practice by improving its

empirical performance.

The possibility that imperfect information in NK models improves the empirical fit has

been examined by Collard and Dellas (2004) and Collard and Dellas (2006), although an

earlier assessment of the effects of imperfect information for an IS-LM model dates back to

Minford and Peel (1983). They show that with imperfect information about output and the

technology shock, or with misperceived money, the effect on inflation and output of a mon-

etary shock is the hump-shaped one displayed empirically. With perfect information, the

hump-shaped effect is not in evidence in simulations of the NK model. Collard and Dellas

(2006) in particular is able to reproduce this without resorting to lagged price indexation.

The implication of these examples is that since VAR estimates of macroeconomic aggregates,

when simulated, lead to hump-shaped responses, it is easier to get a closer fit to the data

when we assume that information about some or all of these aggregates is imperfect. The

purpose of our paper is to investigate this issue formally within the Bayesian-maximum like-

lihood estimation framework examining model fit in terms of model posterior probabilities,

impulse responses, second moments autocorrelations and comparison with a DSGE-VAR.3

The rest of the paper is organized as follows. Section 2 sets out the model. Section

2We are grateful to George Evans for pointing out this point.
3Since writing and presenting this paper we came across Collard et al. (2009) which carries out a similar

exercise using the solution method of Pearlman et al. (1986). We provide more details of the methodology

and a formal comparison with the rational inattention approach of Sims (2005). A further distinguishing

feature of our work is that our model validation alongside the marginal likelihood comparison is more

comprehensive. But most importantly, whereas Collard et al. (2009) conclude that marginal likelihood

differences between symmetric and asymmetric information assumptions are “rather small”, we find very

significant differences that are supported by our comparisons of second moments with those of the data

and model impulse responses with that of a DSGE-VAR. This suggests that the importance of imperfect

information for understanding business cycles may be underestimated by these authors.
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3 sets out the solution method (summarizing Pearlman et al. (1986)) and pays particular

attention to the issue of log-linearization. Sections 4 provides an analytical solution for a

simplified version of our model. Sections 5 and 6 set out and discuss the results of our

Bayesian estimation. Section 7 concludes.

10 The Model

We utilize a simple NK model with a Taylor-type interest rate rule. The simplicity of our

model facilitates the separate examination of different sources of persistence in the model.

First, the model in its most general form has external habit in consumption habit and price

indexing. These are part of the model, albeit ad hoc in the case of indexing, and therefore

endogenous. Persistent exogenous shocks to demand, technology and the price mark-up

classify as exogenous persistence. A key feature of the model is a further endogenous

source of persistence that arises when agents have imperfect information and learn about

the state of the economy, and the shocks in particular, using Kalman-filter updating.

The full model in non-linear form is as follows

1 = β(1 +Rt)Et

[
MUC

t+1

MUC
t Πt+1

]
(67)

Wt

Pt
= − 1

(1− 1
η )

MUL
t

MUC
t

(68)

Yt = AtL
α
t (69)

MCt =
Wt

αAtPtL
α−1
t

(70)

Ht − ξβEt[Π̃
ζ−1
t+1Ht+1] = YtMUC

t (71)

Jt − ξβEt[Π̃
ζ
t+1Jt+1] =

ζ

ζ − 1
MCtMStYtMUC

t (72)

1 = ξΠ̃ζ−1
t + (1− ξ)

(
Jt
Ht

)1−ζ

(73)

Π̃t ≡ Πt

Πγ
t−1

(74)

Yt = Ct +Gt (75)

Equation (67) is the familiar Euler equation with β the discount factor, 1 + Rt the gross

nominal interest rate, MUC
t the marginal utility of consumption and Π ≡ Pt

Pt−1
the gross

inflation rate, with Pt the price level. The operator Et[·] denotes expectations conditional
upon a general information set (see next section). In (68) the real wage, Wt

Pt
is a mark-up

on the marginal rate of substitution between leisure and consumption. MUL
t the marginal

utility of labour supply Lt. Equation (69) is the production function with labour the only

variable input into production and the technology shock At exogenous. Equation (70) de-
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fines the marginal cost. Equations (71) to (74) describe Calvo pricing with 1− ξ equal to

the probability of a monopolistically competitive firm re-optimizing its price, indexing by

an amount γ and an exogenous mark-up shock MSt (see Levine et al. (2007b)). Finally

(75), where Ct denotes consumption, describes output equilibrium, with an exogenous gov-

ernment spending demand shock Gt.

To close the model we assume a general one-period ahead Inflation Forecast Based

Taylor-type interest-rule

log(1+Rt) = ρr log(1+Rn,t−1)+(1−ρr)

(
θπEt

[
log

Πt+1

Π

]
+ log(

1

β
) + θyEt

[
log

Yt
Y ∗
t

])
+ϵe,t

(76)

where Y ∗
t is the flexi-price natural rate of output and ϵe,t is a monetary policy shock.

The form of the single period utility for household r is a non-separable function of

consumption and labour effort that is consistent with a balanced growth steady state is:

U ≡
[
(Ct(r)− hCCt−1)

1−ϱ(1− Lt(r))
ϱ
]1−σ

1− σ
(77)

where hCCt−1 is external habit. In equilibrium Ct(r) = Ct and differentiating we have

MUC
t = (1− ϱ)(Ct − hCCt−1)

(1−ϱ)(1−σ)−1(1− Lt)
ϱ(1−σ) (78)

MUL
t = −(Ct − hCCt−1)

(1−ϱ)(1−σ)ϱ(1− Lt)
ϱ(1−σ)−1 (79)

Shocks At, Gt are assumed to follow AR(1) processes. Thus we have

log
At+1

A
= ρa log

At

A
+ ϵa,t+1 (80)

log
Gt+1

G
= ρg log

Gt

G
+ ϵg,t+1 (81)

where X denotes the non-stochastic balanced growth value or path of the variable Xt. ϵe,t,

ϵa,t and ϵg,t are i.i.d. with mean zero and variances σ2
ϵe , σ

2
ϵa and σ2

ϵg respectively. ϵe,t is

assumed to be white noise. Following Smets and Wouters (2007) we decompose the price

mark-up shock into persistent and transient component: MSt = MSper,tMStran,t where

log
MSper,t+1

MSper
= ρms log

MSper,t

MSper
+ ϵmsper,t+1 (82)

log
MStra,t+1

MStra
= ϵmstra,t+1 (83)

This results in MSt being an ARMA(1,1) process.

Note that we can normalize A = 1 and put MS = MSper = MStra = 1 in the steady

state. ϵmstra,t, is also assumed to be i.i.d. with mean zero and variance σ2
ϵmstra

. The

innovations are assumed to have zero contemporaneous correlation. This completes the

model. The equilibrium is described by 13 equations, (67)–(75) and (76)–(79) defining 13
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endogenous variables Πt Π̃t Ct Yt Rt MCt MUC
t Ut MUL

t Lt Ht Jt and
Wt
Pt

. There are 4

shocks in the system: At, Gt, MSt and ϵe,t. The natural rate Y
∗
t is determined by the same

set of equations with MCt = 0.

The log-linearization4 of the model about the non-stochastic steady state is given by

πt =
β

1 + βγ
Etπt+1 +

γ

1 + βγ
πt−1 +

(1− βξ)(1− ξ)

(1 + βγ)ξ
mct +mst

wt − pt = muLt −muCt

yt = at + αlt

mct = wt − pt − at + (1− α)lt

EtmuCt+1 = muCt − (rt − Etπt+1)

muCt =
(1− ϱ)(1− σ)− 1

1− hC
(ct − hCct−1)−

ϱ(1− σ)L

1− L
lt

muLt =
1

1− hC
(ct − hCct−1) +

L

1− L
lt +muCt

yt = cyct + (1− cy)gt where cy =
C

Y
gt+1 = ρggt + ϵg,t+1

at+1 = ρaat + ϵa,t+1

mspert+1 = ρmsmspert + ϵmsper,t+1

mst = mspert + ϵmstra,t

In the log-linearized model the natural rate of output, y∗t say, is given by putting mct =

mc∗t = 0; i.e.,

w∗
t − p∗t = mrs∗t =

1

1− hC
(c∗t − hCc

∗
t−1) +

L

1− L
l∗t

(1− α)l∗t = at − (w∗
t − p∗t )

y∗t = cyc
∗
t + (1− cy)gt

y∗t = at + αl∗t

ot = yt − y∗t

which defines the output gap, ot, as a function of the shocks at and gt. The log-linearized

interest rate rule is then

rt = ρrrt−1 + (1− ρr)[θπEtπt+1 + θyEtot] + ϵe,t (84)

Bayesian estimation is based on the rational expectations solution of the log-linear

model. The conventional approach assumes that the private sector has perfect information

4Lower case variables are defined as xt = log Xt
X

. rt and πt are log-deviations of gross rates. The validity

of this log-linear procedure for general information sets is discussed in the next section.
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of the entire state vector muCt , πt, πt−1, ct−1, c
∗
t−1 and crucially the output gap (so that

Etot = ot in (84)), current shocks mspert, mst, at, and gt. Since all the other macro-

variables can be expressed in terms of the state variables it follows that the information set

of the private sector must include these as well. These are extreme information assumptions

and exceed the data observations on three data sets yt, πt and rt that we subsequently use

to estimate the model. If the private sector can only observe these data series (we refer to

this as symmetric information) we must turn from a solution under perfect information on

the part of the private sector (later referred to as asymmetric information – AI since the

private sector’s information set exceeds that of the econometrician) to one under imperfect

information – II. This we now turn to.

11 General Rational Expectations Solution under Perfect

and Imperfect Information

Our model is a special case of the following general setup in non-linear form

Zt+1 = J(Zt, EtZt, Xt, EtXt) + νσϵt+1 (85)

EtXt+1 = K(Zt, EtZt, Xt, EtXt) (86)

where Zt, Xt are (n−m)× 1 and m× 1 vectors of backward and forward-looking variables,

respectively, and ϵt is a ℓ × 1 shock variable, ν is an (n −m) × ℓ matrix and σ is a small

scalar. In log-linearized form with zt ≡ log Zt
Z where Z is the possibly trended steady state

and xt ≡ log Xt
X . the state-space representation is[

zt+1

Etxt+1

]
=

[
A11 A12

A21 A22

][
zt

xt

]
+B

[
Etzt

Etxt

]
+

[
ut+1

0

]
(87)

where zt, xt are vectors of backward and forward-looking variables, respectively, and ut

is a shock variable; a more general setup allows for shocks to the equations involving

expectations. In addition we assume that agents all make the same observations at time t,

which are given by

Wt = m(Zt, EtZt, Xt, EtXt) + µσϵt (88)

wt =
[
M1 M2

] [ zt

xt

]
+ L

[
Etzt

Etxt

]
+ vt (89)

in non-linear and linear forms respectively, where µσϵt and vt represents measurement

errors. Given the fact that expectations of forward-looking variables depend on the infor-

mation set, it is hardly surprising that the absence of full information will impact on the

path of the system.
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In order to simplify the exposition we assume terms in EtZt and EtXt do not appear

in the set-up so that in the linearized form B = L = 0. Full details of the solution for the

general setup are provided in Pearlman et al. (1986).5

11.1 Linear Approximation about the Non-Stochastic Steady State

Before proceeding to the rational expectations solution, we need to pose a basic question: is

(87) linearized about the deterministic steady state, where expectations are conditional on

any information set, a correct general form of the first-order approximation to the non-linear

model above? In other words, up to a first order approximation, are the expected values of

all variables in the non-linear model equal to their deterministic steady state values?

We draw upon and generalize the results of Schmitt-Grohe and Uribe (2004) on approx-

imating non-linear RE models, Pearlman et al. (1986) PI solutions of linear RE models, and

extended Kalman filter approximations for non-linear models. The latter is different from

the standard engineering literature in which the Kalman filter is re-linearized at every stage

(see Appendix B). However if the system is always close to the equilibrium, then there is

no advantage to be gained from this, and we keep the linearization about the equilibrium.

We now prove the following which establishes our requirement for the first order ap-

proximation:

Theorem

We look for a RE solution to to the non-linear model (85) and (86) under imperfect infor-

mation which involves the innovations process variable Z̃t ≡ Zt − Et−1Zt:

Xt = g(Zt, Z̃t, σ) ; Zt+1 = h(Zt, Z̃t, σ) + ησεt+1 ; Z̃t+1 = f(Z̃t, σ) + ησεt+1 (90)

where σ is small. Then we have that gσ = hσ = 0.

Proof : See Appendix A.

This is the most important part of the generalization of Schmitt-Grohe and Uribe (2004),

and the remainder represents a linearized version of Pearlman et al. (1986).

11.2 Rational Expectations Solution

First assume perfect information. Following Blanchard and Kahn (1980), it is well-known

that, there is then a saddle path satisfying:

xt +Nzt = 0 where
[
N I

] [ A11 A12

A21 A22

]
= ΛU

[
N I

]
(91)

where ΛU has unstable eigenvalues.

5Our model reduces to this form if we assume a pure inflation targeting rule with θy = 0 in (76) and

(84). In fact we find our empirical results to change very little with this simplification.
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In the imperfect information case, following Pearlman et al. (1986), we use the Kalman

filter updating given by[
zt,t

xt,t

]
=

[
zt,t−1

xt,t−1

]
+ J

[
wt −M

[
zt,t−1

xt,t−1

]]
(92)

where we denote zt,t ≡ Et[zt] etc. Thus the best estimator of the state vector at time t− 1

is updated by multiple J of the innovation for the vector of observables wt −M

[
zt,t−1

xt,t−1

]
.

The matrix J is given by

J =

[
PDT

−NPDT

]
Γ−1 (93)

where D ≡ M1 − M2A
−1
22 A21, M ≡ [M1 M2] partitioned conformably with

[
zt

xt

]
, Γ ≡

EPDT+V where E ≡ M1−M2N , V = cov(vt) is the covariance matrix of the measurement

errors and P satisfies the Ricatti equation (97) below.

Using the Kalman filter, the solution as derived by Pearlman et al. (1986)6 is given by

the following processes describing the pre-determined and non-predetermined variables zt

and xt and a process describing the innovations z̃t ≡ zt − zt,t−1:

Predetermined : zt+1 = Czt + (A− C)z̃t + (C −A)PDT (DPDT + V )−1(Dz̃t + vt)

+ ut+1 (94)

Non-predetermined : xt = −Nzt + (N −A−1
22 A21)z̃t (95)

Innovations : z̃t+1 = Az̃t −APDT (DPDT + V )−1(Dz̃t + vt) + ut+1 (96)

where C ≡ A11 −A12N, A ≡ A11 −A12A
−1
22 A21, D ≡ L1 − L2A

−1
22 A21

and P is the solution of the Riccati equation given by

P = APAT −APDT (DPDT + V )−1DPAT + U (97)

and U = cov(ut) is the covariance matrix of the shocks to the system.

The fact that the dynamics of zt depend on the dynamics of z̃t is equivalent to the result

of Luo and Young (2009). For a simple stochastic growth model with rational inattention,

they show that the dynamics of capital in their model, kt, depends on k̂t where the latter

is last period’s expected value of kt, which in our notation would be kt − k̃t.

On the theme of rational inattention, it is also interesting to note that when there is only

one predetermined variable in the system (as in Adam (2007) and Luo and Young (2009)),

6A less general solution procedure for linear models with imperfect information is provided by Lungu

et al. (2008) with an application to a small open economy model, which they also extend to a non-linear

version.
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and it is observed with measurement error, then there is a one-to-one relationship between

the variance of this error and the information channel capacity, the latter measuring the

degree of rational inattention. This is because if kt has a normal distribution, then the

difference in entropy at time t before and after a noisy measurement of kt is a function7 of

σ2
k/(pk+σ2

k), where pk = vart−1kt and σ2
k is the variance of the noise. Thus if σ2

k is defined,

then after solving the Riccati equation above, one can evaluate the capacity of the channel.

Conversely, when the capacity is given, one can evaluate pk/σ
2
k, followed by pk from the

Riccati equation, which then implies σ2
k. When there are several predetermined variables,

with noisy observations made on only one, then there is still a one-to-one relationship; thus

if kt = hT zt, then the difference in entropy is σ2
k/(h

TPh+σ2
k). Thus our general framework

with measurement error encompasses the rational inattention literature that assumes a sin-

gle predetermined variable and relies on information channel capacity. However when more

than one variable is observed with error, then the variance of the shock to measurements is

a square matrix whose number of elements are obviously larger than the single parameter

that represents the channel capacity. Thus we may consider estimating the capacity when

there is one variable that is measured, but this does not easily generalise to the case when

when there is more than one measurement per time period.

We can see that the solution procedure above is a generalization of the Blanchard-Kahn

solution for perfect information by putting z̃t = vt = 0 to obtain

zt+1 = Czt + ut+1 (98)

xt = −Nzt (99)

12 Analytical Example

To demonstrate the imperfect information solution procedure and the possible implica-

tions for endogenous persistence we consider a special case of our model without habit or

indexation:

πt = βEtπt+1 +
(1− βξ)(1− ξ)

ξ
mct +mst (100)

which for convenience we write as

Etπt+1 =
1

β
πt + xt + wt (101)

where xt ≡ (1−βξ)(1−ξ)
βξ mct and wt ∼ N(0, σ2

w) is now our transient shock to the mark-up.

We now assume that xt follows an exogenous AR(1) process

xt+1 = ρxt + εt+1 ϵt ∼ N(0, σ2
ϵ ) (102)

7For a Gaussian process the variance conditioned by the latest measurement is given by pk−p2k/(pk+σ2
k) =

pkσ
2
k/(pk + σ2

k), so that the channel capacity is given by 1
2
(log(pk)− log(pkσ

2
k/(pk + σ2

k))).
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For our purposes this is most easily set up in the form
wt+1

xt+1

Et[πt+1]

 =


0 0 0

0 ρ 0

1 1 α




wt

xt

πt

+


wt+1

εt+1

0

 (103)

where α ≡ 1
β .

Under perfect information agents (somehow) observe the entire state vector consisting

of the mark-up shock, the marginal cost and inflation.


wt

xt

πt

. We compare this with im-

perfect information where agents observe only inflation πt. Then from our general solution

procedure in section 3 the following matrices are defined:

A = C =

[
0 0

0 ρ

]
N =

[
1

α

1

α− ρ

]
= −E D =

[
− 1

α
− 1

α

]
U =

[
σ2
w 0

0 σ2
ε

]
(104)

It follows from (97) that

P =

[
σ2
w 0

0 p

]
where p =

ρ2pσ2
w

σ2
w + p

+ σ2
ε (105)

From (94) it follows that the innovations are given by[
w̃t+1

x̃t+1

]
=

[
0 0

0 ρ

][
w̃t

x̃t

]
−

[
0 0

0 ρ

][
σ2
w

p

]
(w̃t + π̃t)

(p+ σ2
w)

+

[
wt+1

ϵt+1

]
(106)

Noting that N −A−1
22 A21 =

[
0 ρ

α(α−ρ)

]
, it follows that the solution is given by

xt = ρxt−1 + εt (107)

x̃t =
ρ

σ2
w + p

(σ2
wx̃t−1 − pwt−1) + εt (108)

πt = − 1

α

(
1 +

ρσ2
wp

(α− ρ)(σ2
w + p)

)
wt −

1

α− ρ
xt +

ρσ2
w

α(α− ρ)(σ2
w + p)

x̃t (109)

Figure 1 in Appendix D illustrates the solution for β = 0.99, ρ = 0.9, σϵ = 1 and

σ2
w = 0, 1, 2. The figure shows an impulse response to the mark-up, x0 = 1. Under

perfect information σ2
w = 0 and inflation is given by π = − 1

α−ρxt with xt = ρxt−1, x0 = 1.

Inflation jumps immediately to −9.1 but then proceeds to return to zero driven by the

exogenous process for xt. With imperfect information (II) the last term in (109) associated

with the innovation introduces endogenous persistence arising from the rational learning

of the private sector about this unobserved shock using Kalman updating. The inflation

trajectory is now hump-shaped and the deviation from the v-shaped perfect information

path increases as the variance of the transient shock σ2
w increases.
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13 Bayesian Estimation

In the same year that Blanchard and Kahn (1980) provide a general solution for a linear

model under RE in the state space form, Sims (1980) suggests the use of Bayesian methods

for solving multivariate systems. This leads to the development of Bayesian VAR (BVAR)

models (Doan et al. (1984)), and, during the 1980s, the extensive development and appli-

cation of Kalman filtering-based state space systems methods in statistics and economics

(Aoki (1987), Harvey (1989)).

Modern DSGE methods further enhance this Kalman filtering based Bayesian VAR state

space model with Monte-Carlo Markov Chain (MCMC) optimising, stochastic simulation

and importance-sampling (Metropolis-Hastings (MH) or Gibbs) algorithms. The aim of this

enhancement is to provide the optimised estimates of the expected values of the currently

unobserved, or the expected future values of the variables and of the relational parameters

together with their posterior probability density distributions (Geweke (1999)). It has been

shown that DSGE estimates are generally superior, especially for the longer-term predictive

estimation than the VAR (but not BVAR) estimates (Smets and Wouters (2007)), and

particularly in data-rich conditions (Boivin and Giannoni (2005)).

The crucial aspect is that agents in DSGE models are forward-looking. As a con-

sequence, any expectations that are formed are dependent on the agents’ information set.

Thus unlike a backward-looking engineering system, the information set available will affect

the path of a DSGE system.

The Bayesian approach uses the Kalman filter to combine the prior distributions for

the individual parameters with the likelihood function to form the posterior density. This

posterior density can then be obtained by optimizing with respect to the model parameters

through the use of the Monte-Carlo Markov Chain sampling methods. Four variants of the

linearized model described below are estimated using the Dynare software (Juillard (2003)),

which has been extended by the paper’s authors to allow for imperfect information on the

part of the private sector.

In the process of parameter estimation, the mode of the posterior is first estimated using

Chris Sim’s csminwel after the models’ log-prior densities and log-likelihood functions are

obtained by running the Kalman recursion and are evaluated and maximized. Then a

sample from the posterior distribution is obtained with the Metropolis-Hasting algorithm

using the inverse Hessian at the estimated posterior mode as the covariance matrix of the

jumping distribution. The scale used for the jumping distribution in the MH is set in order

to allow a good acceptation rate (20%-40%). A number of parallel Markov chains of 100000

runs each are run for the MH in order to ensure the chains are converged. The first 25% of

iterations (initial burn-in period) are discarded in order to remove any dependence of the
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chain from its starting values.

13.1 Data and Priors

To estimate the system, we use three macro-economic observables at quarterly frequency

for the US: real GDP, the GDP deflator and the nominal interest rate. Since the variables

in the model are measured as deviations from a constant steady state, the time series are

simply de-trended against a linear trend in order to obtain approximately stationary data.

Following Smets and Wouters (2003), all variables are treated as deviations around the

sample mean. Real variables are measured in logarithmic deviations from linear trends,

in percentage points, while inflation (the GDP deflator) and the nominal interest rate are

detrended by the same linear trend in inflation and converted to quarterly rates. The

estimation results are based on a sample from 1970:1 to 2004:4.

The values of priors are taken from Levin et al. (2005) and Smets and Wouters (2007).

Table 4 in Appendix C provides an overview of the priors used for each model variant

described below. In general, inverse gamma distributions are used as priors when non-

negativity constraints are necessary, and beta distributions for fractions or probabilities.

Normal distributions are used when more informative priors seem to be necessary. We use

the same prior means as in previous studies and allow for larger standard deviations, i.e.

less informative priors, in particular for the habit parameter and price indexation. The

priors on α, ξ are the exceptions and based on Smets and Wouters (2007) with smaller

standard deviations. Also, for the parameters γ, hC , ξ and ϱ we center the prior density

in the middle of the unit interval. The priors related to the process for the price mark-up

shock are taken from Smets and Wouters (2007).

Three of the structural parameters are kept fixed in the estimation procedure. These

calibrated arameters are β = 0.99; L = 0.4, cy = 0.6 (Note the latter allows for investment

with capital in the model, but held fixed).

13.2 Model Comparisons

We consider 4 model variants: GH (γ, hC > 0), G (hC = 0), H (γ = 0) and Z (zero persis-

tence or γ = hC = 0). Then for each model variant we examine three information sets: first

we make the assumption that private agents are better informed than the econometricians

(the standard asymmetric information case in the estimation literature) – the Asymmet-

ric Information (AI) case. Then we examine two symmetrical information sets for both

econometrician and private agents: Imperfect Information without measurement error on

the three observables rt, πt, yt (II) and measurement error on two observables πt, yt (IIME).

This gives 12 sets of results. First in Table 1 we report the posterior marginal data density

23



Model AI II IIME

H -238.20 -230.89 -231.37

G -245.30 -239.15 -238.40

GH -239.59 -230.95 -230.52

Z -244.37 -242.04 -239.21

Table 1: Marginal Log-likelihood Values Across Model Variants and Information Sets

from the estimation which is computed using the Geweke (1999) modified harmonic-mean

estimator. The marginal data density can be interpreted as maximum log-likelihood values,

penalized for the model dimensionality, and adjusted for the effect of the prior distribution

(Chang et al. (2002)). Whichever model variant with the highest marginal data density

attains the best relative model fit.

The model posterior probabilities are constructed as follows. Let pi (θ|mi) represent

the prior distribution of the parameter vector θ ∈ Θ for some model mi ∈ M and let

L (y|θ,mi) denote the likelihood function for the observed data y ∈ Y conditional on the

model and the parameter vector. Then the joint posterior distribution of θ for model mi

combines the likelihood function with the prior distribution:

pi (θ|y,mi) ∝ L (y|θ,mi) pi (θ|mi) (110)

Bayesian inference also allows a framework for comparing alternative and potentially

misspecified models based on their marginal likelihood. For a given model mi ∈ M and

common dataset, the latter is obtained by integrating out vector θ,

L (y|mi) =

∫
Θ
L (y|θ,mi) p (θ|mi) dθ (111)

where pi (θ|mi) is the prior density for model mi, and L (y|mi) is the data density for

model mi given parameter vector θ. To compare models (say, mi and mj) we calculate

the posterior odds ratio which is the ratio of their posterior model probabilities (or Bayes

Factor when the prior odds ratio, p(mi)
p(mj)

, is set to unity):

POi,j =
p(mi|y)
p(mj |y)

=
L(y|mi)p(mi)

L(y|mj)p(mj)
(112)

BFi,j =
L(y|mi)

L(y|mj)
=

exp(LL(y|mi))

exp(LL(y|mj))
(113)

in terms of the log-likelihoods. Components (112) and (113) provide a framework for com-

paring alternative and potentially misspecified models based on their marginal likelihood.

Such comparisons are important in the assessment of rival models.
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Given Bayes factors we can easily compute the model probabilities p1, p2, · · ·pn for n

models. Since
∑n

i=1 pi = 1 we have that

1

p1
=

n∑
i=2

BFi,1 (114)

from which p1 is obtained. Then pi = p1BF (i, 1) gives the remaining model probabilities.

These are in Table 2 reported as follows. Let the probability of model variant G, information

assumption IIME say be Pr(G, IIME). Then the probability ranking is shown in Table 2.

Pr(GH, IIME)=0.3610

Pr(H, II)=0.2494

Pr(GH, II)=0.2348

Pr(H, IIME)=0.1543

Pr(H, AI)=0.0002

Pr(G, IIME)=0.0001

Pr(G, II)=0.0001

Pr(Z, IIME)=0.0000

Pr(GH, AI)=0.0000

Pr(Z, II)=0.0000

Pr(Z, AI)=0.0000

Pr(G, AI)=0.0000

Table 2: Model Probabilities Across Model Variants and Information Sets

Tables 1 and 2 reveal that a combination of Model GH and with information set IIME

outperforms its 11 rivals with a posterior probability of 36%. However, the differences in

log marginal likelihood or the posterior odds ratio are not substantive between Models GH

and H under either IIME or II. For example, the log marginal likelihood difference between

Model GH under IIME and Model H under II is 0.43. As suggested by Kass and Raftery

(1995), in order to choose the former over later, we need a prior probability over Model GH

under IIME 1.54 (≈ e0.43) times larger than our prior probability over Model H under II.

This factor is believed to be small and therefore we are unable to conclude that Model GH

under IIME outperforms Model H under II. Equivalently, in Bayesian model comparison,

a posterior Bayes factor needs to be at least 3 for there to be a positive evidence favouring

Model mi over mj .

Our analysis of the model comparison contains several important results. First, price

indexation does not improve the model fit, but the existence of habit is crucial as the results

clearly suggest that incorporating habit persistence in consumption in the US model imparts
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greater inertia to the model, and improves the fit (relatively). Second, the II (or IIME)

specification leads to significantly better fit for all model variants. Third, we find substantial

evidence that the combinations of Models GH/H and IIME/II are far superior than any

other combinations in terms of the ability to explain the data highlighting the importance

of the underlying model persistence mechanisms and informational symmetry.

The focus on various alternative specifications seeks to address some of the concerns with

Bayesian model comparisons pointed out by Sims (2003). By estimating a large number

of model variants, this method intends to complete the space of competing models and to

compute posterior odds that take into consideration other (seemingly irrelevant) aspects

of the specification. One obvious pitfall or limitation of this methodology is that the

assessment of how fit a model is only relative to its other rivals with different restrictions.

The outperforming model in the space of competing models may still be poor (potentially

misspecified) in capturing the important dynamics in the data. To further evaluate the

absolute performance of one particular model (or information assumption) against data, it

is necessary to compare the model’s implied characteristics with those of the actual data

(or the VAR model).

13.3 Posterior Estimates

Table 5 in Appendix C reports the parameter estimates using Bayesian methods. It sum-

marizes posterior means of the studied parameters and 90% confidence intervals for the

four model specifications across the three information sets, AI, II and IIME, as well as the

posterior model odds. Overall, the parameter estimates are plausible and reasonably robust

across model and information specifications. The results are generally similar to those of

Levin et al. (2005) and Smets and Wouters (2007) for the US, thus allowing us to conduct

relevant empirical comparisons.

First it is interesting to note that the parameter estimates are fairly consistent across

the information assumptions despite the fact that these alternatives lead to a considerably

better model fit based on the corresponding posterior marginal data densities. On the other

hand, the point estimates are relatively less robust across different model specifications,

particularly for the Calvo price parameter and those in relation to the policy rule and

process of mark-up shock.

Focusing on the parameters characterising the degree of price stickiness and the existence

of real rigidities, we find that the price indexation parameters are estimated to be smaller

than assumed in the prior distribution (in line with those reported by Smets and Wouters

(2007)). The estimates of γ imply that inflation is intrinsically not very persistent in the

relevant model specifications (the weight on lagged inflation in the Phillips curve is 0.27

implied by Model GH when assuming perfect information). If we assume an imperfect
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information set on GH, the model estimates that inflation is sightly more persistent as the

weight becomes 0.33. The posterior mean estimates for the Calve price-setting parameter,

ξ, obtained from Model GH across all the information sets imply an average price contract

duration of about five quarters, similar to the findings of Christiano et al. (2005), Levin

et al. (2005) and Smets and Wouters (2007). The external habit parameter is estimated to

be around 80% of past consumption, which is somewhat higher than the estimates reported

in Christiano et al. (2005), although this turns out to be a very robust outcome of the

estimated models. The point estimates of hC obtained from the imperfect information

version seems to be slightly closer to the plausible values.

As noted, it is not sufficient, at least at this stage, to establish the superiority of the

II version over its perfect information counterpart against data based on the posterior

estimates and data preferences. In what follows, we carry out a more general evaluation

that is based on impulse responses, moment criteria and autocorrelations.

13.4 Impulse Response Analysis

This subsection investigates the importance of shocks to the endogenous variables of in-

terests by analysing the impulse responses to the structural shocks in the models. As an

alternative way of validating the model performance, we also compare the estimated DSGE

model and an identified VAR model in terms of matching their impulse responses. To

focus the presentation, this exercise is only performed for Model GH (the ‘best’ model)

and Model Z (contains zero persistence) across different information sets (i.e. AI and II).

The aim is to investigate the impact of changing information assumptions in terms of the

impulse response dynamics.

The estimated model impulse response functions (IRFs) can be directly related from the

state space representation of the above economic model. To tackle the degree of freedom

problem of the VAR models, an alternative solution to improving VAR estimates by ‘re-

stricting’ its parameter estimates is to tilt estimates toward a point in the parameter space.

Careful construction of VAR prior (or restricting VARs) is crucial because matching impulse

responses in the data and in the model requires the identification restrictions imposed on

the VAR are consistent and compatible with the theoretical model. In order to estimate the

identified IRFs from a VAR model, we follow the so-called DSGE-VAR approach proposed

by Del Negro and Schorfheide (2004), where they use the DSGE model itself to construct a

prior distribution for the VAR coefficients so that DSGE-VAR estimates are tilted toward

DSGE model restriction and they find the resulting model can be useful for policy analysis.

In general, their method implements the DSGE model prior by generating dummy

observations from the DSGE model, and adding them to the actual data and leads to an

estimation of the VAR based on a mixed sample of artificial and actual observations. The
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ratio of dummy over actual observations (called the hyperparameter λ) controls the variance

and therefore the weight of the DSGE prior relative to the sample. If λ is small the prior is

diffuse. For extreme values of this parameter (0 or ∞) either an unrestricted VAR or the

DSGE model is estimated. The empirical performance of a DSGE-VAR will depend on the

tightness of the DSGE prior. Details on the algorithm used to implement this DSGE-VAR

are to be found in Del Negro and Schorfheide (2004) and Del Negro et al. (2005).

We fit our VAR to the same data set used to estimate the DSGE model. We con-

sider a VAR with 4 lags.8 We use a data-driven procedure to determine the tightness

of prior endogenously based on the marginal data density. Our choice of the optimal λ

is 0.5 and this is found by comparing different VAR models using the estimates of the

marginal data density. In particular, we iterate over a grid that contains the values of

λ = [0; 0.25; 0.5; 0.75; 1; 2; 5;∞], we find that λ = 0.5 has the highest posterior probability.

Overall, DSGE-VAR(4) with λ = 0.5 has the highest posterior probability.9 This implies

that the mixed sample that is used to estimate the VAR has slightly lower weight on the

DSGE model (artificial observations) than on the VAR (actual observations).

Figure 2 in Appendix D depicts the mean responses corresponding to a positive one

standard deviation shock. The endogenous variables of interest are the observables in the

estimation and each response is for a 10 period (2.5 years) horizon. All DSGE impulse

responses are computed simulating the vector of DSGE model parameters at the posterior

mean values reported in Table 5. The impulse responses for VAR(4) are obtained using the

DSGE-VAR identification procedure. Overall, we find that the sign and magnitude of the

DSGE and VAR impulse responses are quite similar implying that the DSGE model seems

to mimic the VAR model in, at least, some dimensions. This confirms that the estimated

DSGE model under both AI and II seems to be able to capture the main features of the

US data. The overall impact of the model dynamics can be broadly described using the

estimated impulse responses.

In response to an exogenous policy tightening, our model GH under asymmetrical infor-

mation (AI) predicts a decline in output that dies out within a few years, a gradual decrease

in the inflation rate over several periods following a hump shaped response and a rise in the

nominal interest rate. These findings are robust across many empirical studies and can be

viewed as evidence of sizeable and persistent real effects of monetary policy shock captured

by our model GH. When we assume informational symmetry, results for the DSGE model

responses change dramatically. In particular, the imperfect information (II) specification

produces a large hump-shaped decline in output (the peak effect occurs roughly over one

8The choice of the lag length maximizes the marginal data density associated with the DSGE-VAR(λ̂).
9Alternatively, one can simply find the ‘optimal’ λ̂ by estimating the parameter λ as one of the deep

parameters.
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year after the shock) and a gradual and lagged response in inflation when consumption

habit and indexation are present. The larger decline and sluggish response of output to the

policy shock in the II model show the evidence of endogenous persistence that is driven by

informational symmetry. It is noteworthy that model GH succeeds in accounting for the

inertial responses of inflation and output. Model Z without any persistence mechanisms

fails to replicate the observed hump-shaped IRF for inflation under both information sets.

Following a positive technological shock, inflation and interest rate fall gradually as

higher productivity shrinks labour demand, pushing marginal cost down on impact, lowers

prices and interest rate and monetary policy does not respond strongly enough to offset

the downward pressure on marginal cost. Again these responses are predicted by many

empirical studies on DSGE models (e.g. Levin et al. (2005) and Smets and Wouters (2007))

and the estimated reactions from our models account for these behaviours. In particular,

Model GH when assuming II does well at accounting for the dynamic response of the US

output to a productivity shock and Model Z when assuming II does a better job, compared

to its AI counterpart, at predicting the reactions of inflation and interest rate computed

from the data following a shock in technology. It is also worth noting that with AI the

DSGE model somewhat overstates the initial responses particularly in inflation. In general,

we conclude that the model’s overall performance with respect to a technology shock is

improved with informational symmetry.

With respect to the remaining shocks, our models do well at accounting for the responses

of output and interest rate to a government spending shock and the response of inflation

to the transient part of a price mark-up shock. The qualitative effects are similar and

the information specification does not seem to make a significant impact. The response of

inflation following the government spending shock is somewhat overstated by our DSGE

model under either information assumption. In terms of the persistent mark-up shock

(referred to as Mark-up (ms) in Figure 2), the II assumption helps improve the model’s

performance in reflecting the central projection, particularly of inflation and output. To be

specific, II helps generate a better shape of IRF while Model GH under AI predicts that

output is not affected very much. Moreover, a result that is worth emphasizing is that

Model Z when assuming II does very well at projecting the most likely after-shock path of

inflation. Changing the information assumption slightly improves the IRFs of interest rate.

Finally, the performance of changing the information assumptions in terms of the impulse

response dynamics on output and interest rate to the transient component of the mark-up

shock (Mark-up (m)) appears ambiguous to interpret. In this case, the effects are opposite

to the data.

Overall, these results from the estimated posterior impulse responses, combined with

the simulated IRF based on the simple calibrated example (Figure 1), mainly imply that
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the presence of the II specification in the US economy is capable of making an impact on

producing different model-based dynamics. This further confirms the above findings that

there is, quantitatively, substantial evidence in the data to support the assumption that

both agents and econometricians have only the same imperfect information available.

14 Further Model Validation

The summary statistics such as first and second moments have been standard for researchers

to use to validate models in the literature on DSGE models, especially in the RBC tradition.

As the Bayes factors (or posterior model odds) are used to assess the relative fit amongst a

number of competing models, the question of comparing the moments is whether the models

correctly predict population moments, such as the variables’ volatility or their correlation,

i.e. to assess the absolute fit of a model to macroeconomic data. Following Schorfheide

(2000), let ŷT be a sample of observation of length T that one could have observed in the past

or that one might observe in the future. One can derive the sampling distribution of ŷT given

the current state of knowledge using the Bayes theorem: p(ŷT |yT ) =
∫
L(ŷT |θ)p(θ|yT )dθ.

Assume that T (yT ) is a test quantity that reflects an aspect of the data (moment) that

one wants to check, e.g. correlation between output and inflation or the output volatility.

In order to assess whether the estimated model can replicate population moments, one

sequentially generates draws from the posterior distribution, p(θ|yT ) and the predictive

distribution p(ŷT |yT ) so that the predictive T (ŷT ) can be computed.

14.1 Standard Moment Criteria

To assess the contributions of assuming different information sets in our estimated model

variants, we compute some selected second moments and present the results in this subsec-

tion. Table 3 presents the second moments implied by the above estimations and compares

with those in the actual data. In particular, we compute these model implied statistics

by simulating the models at the posterior means obtained from estimation. The models

are simulated by using 10000 series with 10000 periods. The first 1000 observations are

dropped to eliminate the possible effect of initial conditions and an HP filter is applied

before computing the moments to eliminate the possible trends. The results of model’s

second moments are compared with the second moments in the actual data to evaluate

model’s empirical performance for the selected model variants (i.e. GH and Z).

In terms of the standard deviations, almost all the models generate relative high volatil-

ity compared to the actual data (except for output). In line with the Bayesian model

comparison, Model GH (assuming imperfect information) fits the data better in terms of

implied volatility, getting closer to the data in this dimension. Overall, the estimated mod-
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Standard Deviation

Model Output Inflation Interest rate

Data 4.99 0.62 0.74

Model GH AI 5.01 0.71 0.94

Model Z AI 3.01 0.81 1.06

Model GH II 4.57 0.67 0.88

Model Z II 2.67 0.50 0.80

Cross-correlation with Output

Data 1.00 -0.22 -0.36

Model GH AI 1.00 -0.50 -0.71

Model Z AI 1.00 -0.51 -0.46

Model GH II 1.00 -0.47 -0.69

Model Z II 1.00 -0.16 -0.21

Autocorrelations (Order=1)

Data 0.96 0.85 0.94

Model GH AI 0.98 0.88 0.95

Model Z AI 0.95 0.91 0.96

Model GH II 0.98 0.87 0.94

Model Z II 0.98 0.89 0.95

Table 3: Selected Second Moments

els are able to reproduce acceptable volatility for the main variables of the DSGE model.

The inflation volatilities implied by the models are close to that of the data. All models un-

der investigation appear to match well the autocorrelations (order=1) of all the endogenous

variables. Table 3 also reports the cross-correlations of the 3 observable variables vis-a-vis

output. The data report that the inflation rate and nominal interest rate are countercycli-

cal. All model variants perform successfully in generating the negative contemporaneous

inflation-output and interest rate-output correlations observed in the data.

The ‘preferred’ model, Model GH (assuming imperfect information), does a better job

at matching the data volatilities and first order autocorrelations, suggesting that habit for-

mation and informational symmetry help fitting the data in these dimensions. In addition,

the abilities of Model Z in capturing the inflation and interest rate volatilities and the

contemporaneous cross-correlations are improved quite significantly when assuming there

is informational symmetry. Overall, Bayesian Maximum-likelihood based methods suggest

that all the implications of each model for fitting the data are contained in their likelihood

31



functions. In other words, the simulation results mainly show that, switching from AI and

II delivers a better fit to most features of the actual data, as suggested by the data and

likelihood criterion.

14.2 Unconditional Autocorrelations

To further illustrate how the estimated models capture the data statistics based on different

information assumptions, we plot the unconditional autocorrelations of the actual data and

those of the endogenous variables generated by the model variants in Figure 3. In general,

all models match reasonably well the autocorrelations shown in the data within a 10-period

horizon and our ‘best’ model, Model GH under II, does a slightly better job at matching

the autocorrelations compared to its AI counterpart. The data report that all variables are

positively and very significantly autocorrelated over short horizons. At a lag of one quarter,

all the estimated models are able to generate the observed autocorrelations as noted above,

but at lags of 2 and 3 quarters, the model simulated autocorrelations under AI are greater

than those of the sample for the interest rate and inflation. When it comes to matching

the interest rate, all models do a better job, getting closer to the observed persistence.

Of particular interest is that, when assuming II, the implied autocorrelograms produced

by Model Z fit extremely well the observed autocorrelations of interest rate and inflation

while its AI counterpart generates much sluggishness and is less able to match the inflation

autocorrelation observed in the data from the second lag onwards. Inflation in Model GH

is less autocorrelated than in the data from lags of 2 quarters, but it becomes closer to

the data towards the end of sample period. The results in this exercise again show that

the DSGE models under II perform better at capturing the main features of the US data,

strengthening the argument that the presence of informational symmetry helps improve the

model fit to data.

15 Conclusions

Our paper makes both a methodological and substantive contribution to the macroeconomic

literature on imperfect information. The methodological contribution is the provision of a

general tool for estimating DSGE models by Bayesian Maximum-likelihood methods under

very general information assumptions on the part of private agents. Our substantive con-

tribution is an application to a NK model where we compare the standard approach, that

assumes an informational asymmetry between private agents and the econometrician, with

as assumption of informational symmetry. For the former private agents observe all state

variables including shocks, whereas the econometrician only uses only data for output, infla-

tion and interest rates. For the latter both agents have the same imperfect information set.
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We find that in terms of model posterior probabilities, impulse responses, second moments

and autocorrelations, the assumption of informational symmetry significantly improves the

model fit to data.

There are three other notable results. First, we study variants of our model which close

down the two endogenous persistence mechanisms of habit in consumption and indexing in

turn. We then pose the question of whether imperfect information can provide an alterna-

tive source of endogenous persistence as illustrated in our simple analytical model. Indeed

we find this is the case: our Model Z with neither mechanism and with imperfect (sym-

metrical) information fits the observed autocorrelation of the data of the interest rate and

inflation extremely well, whereas the same model with perfect (asymmetrical) information

on the part of the private sectors results in a poor fit in this dimension. Second we study

symmetrical information with measurement error for the observed macroeconomic series

and find this improves the fit still further, thought the increase in the model probability

is not significant. Finally there is little to be gained from the indexation mechanism in

terms of model fit, an encouraging result for our workhorse NK model as price-indexation

is generally deemed to be an unsatisfactory ad hoc compromise feature of this genre.

There are a number of directions for future research. We have deliberately chosen to

apply our methodology to a relatively simple NK model with only few frictions. Having

demonstrated that information plays an important role for the estimation of this model,

the next step would be to examine its implications for closed- and open-economy models

with a range of frictions such as Smets and Wouters (2007) and Adolfson et al. (1983),

respectively. Second as alluded to in the introduction there are other ways of modelling

information limitations associated with the rational inattention literature. We have shown

that our general framework with a single measurement error is equivalent to models in the

rational inattention literature that assumes a single predetermined variable and rely on

information channel capacity. However a formal comparison with the sticky information

approach of Mankiw and Reis (2002) would be of some interest. Finally optimal policy

needs to be examined making consistent information assumptions at the estimation and

policy analysis stages. If imperfect information on the part of the private sector proves

(as in our model) to be empirically supported in a range of DSGE models with various

frictions, this suggests that the imperfect information solution of optimal policy set out in

Pearlman (1992) is appropriate.
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Appendix

A Proof of Theorem

Assume a model of the form

Zt+1 = J(Zt, Xt) + ησεt+1 EtXt+1 = K(Zt, Xt) (A.1)

where σ is small, and with measurements

Wt = L(Zt, Xt) (A.2)

We shall assume that there is a solution to this which involves the innovations process

variable Z̃t ≡ Zt − Et−1Zt:

Xt = g(Zt, Z̃t, σ) Zt+1 = h(Zt, Z̃t, σ) + ησεt+1 Z̃t+1 = f(Z̃t, σ) + ησεt+1 (A.3)

Also assume that

EtZt − EtZt−1 = EtZ̃t = i(Z̃t) (A.4)

Noting that K(Zt, Xt) = EtK(Zt, Xt) it follows that

K(Zt, g(Zt, Z̃t, σ)) = EtK(Zt, g(Zt, Z̃t, σ)) (A.5)

and the 1st order approximation to this is

K1zt +K2g1zt +K2g2z̃t = K1(zt − z̃t + i1z̃t) +K2g1(zt − z̃t + i1z̃t) +K2g2i1z̃t (A.6)

Ultimately we shall be solving for the partial derivative values at the steady state of f, g, h, i,

and in particular by equating terms in zt and z̃t in (A.6) we obtain

K1 +K2g1 = g1h1 K1 +K2g1 +K2g2 = (K1 +K2g1 +K2g2)i1 (A.7)

In the 1-dimensional case it is clear that i1 = 1, and if the dimension of Wt equals that of

Zt then i1 = I, the identity matrix. Now consider the second non-linear equation:

K(Zt, Xt) = K(Zt, g(Zt, Z̃t, σ)) = Etg(Zt+1, Z̃t+1, σ)

= Etg(h(Zt, Z̃t, σ) + ησεt+1, f(Z̃t, σ) + ησεt+1, σ) (A.8)

The first order approximation to this is

K1zt+K2g1zt+K2g2z̃t+K2gσσ = g1h1(zt−z̃t+i1z̃t)+g1h2i1z̃t+g2f1i1z̃t+g1hσσ+g2fσσ+gσσ

(A.9)
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from which it follows that

K1 +K2g1 = g1h1 K2g2 = −g1h1 + g1h1i1 + g1h2i1 + g2f1i1 (A.10)

K2gσ = g1hσ + g2fσ + gσ (A.11)

Equating the two Zt+1 equations implies

h(Zt, Z̃t, σ) = J(Zt, Xt) = J(Zt, g(Zt, z̃t, σ)) (A.12)

so that to first order

J1zt + J2g1zt + J2g2z̃t + J2gσσ = h1zt + h2z̃t + hσσ (A.13)

and hence

J1 + J2g1 = h1 J2g2 = h2 J2gσ = hσ (A.14)

Note that K1 +K2g1 = g1h1 and J1 + J2g1 = h1 are the standard saddlepath solutions for

g1 and h1.

Finally we need an equation describing how Etzt is calculated. Thus assume that Et−1zt

is known. We can use the extended Kalman filter, but evaluated always around the steady

state. The measurement is given by Wt = L(Zt, Xt) = L(Zt, g(Zt, Z̃t, σ)). It follows that

Etzt = Et−1zt + PHT (HPHT )−1Hz̃t (A.15)

where H = L1 + L2g1 + L2g2. It follows that

i1 = PHT (HPHT )−1H (A.16)

Having solved previously for g1, h1 we still have to solve for g2, h2, f1, i1 as well as for

P . Note that the latter arises from

P = f1PfT
1 + σ2ηηT (A.17)

In addition we require that the first-order approximation to Z̃t+1 equation derived from

the the Zt+1 equation should have the same first-order approximation as the Z̃t+1 equation

itself. This implies that

(h1 + h2)(I − i1) = f1 fσ = 0 (A.18)

This implies that we need to solve for the nx+nz unknowns gσ, hσ for which the remaining

equations reduce to :

(K2 − I)gσ = g1hσ J2gσ = hσ (A.19)

Since K2 is nx × nx and J2 is nz × nx, it follows that there are nx + nz equations in (A.19)

from which it follows that gσ = 0, hσ = 0.

Thus the Schmitt-Grohe and Uribe Theorem 1 applies to the case of partial information

as well.
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B Background: Extended Kalman Filter

Consider the following system:

xt+1 = f(xt) + wt zt = h(xt) + vt (B.20)

Define the information set It = {zt, zt−1, zt−2, ...}. Suppose we assume that

p(xt|It−1) ∼ N(xt; x̂t,t−1, Pt) (B.21)

It follows that

p(xt | It) =
N(xt; x̂t,t−1, Pt)N(zt;h(xt), V )∫
N(xt; x̂t,t−1, Pt)N(zt;h(xt), V )dxt

(B.22)

Now assume that both xt and x̂t,t−1 are near to the equilibrium level x. It follows that we

may write a linear approximation

h(xt) = h(x) +H(xt − x) (B.23)

where H = h′(x). Hence

p(xt | It) ∼= N(xt;xt,t, Pt,t) xt,t = xt,t−1 + PtH
′(HPtH

′ + V )−1(zt − h(x)−Hxt,t−1)

(B.24)

Pt,t = Pt − PtH
′(HPtH

′ + V )−1HPt (B.25)

These latter two formulae arise after performing the integration in (B.22) using (B.23).

Note that the extended Kalman filter usually used in the literature linearized h() about

xt,t−1. However,if we assume that the system is always close to its equilibrium value x,

then there is little that is lost by linearizing about x.

The control theory literature provides numerous numerical studies of convergence of

the extended Kalman filter. There appears to be no guarantee of convergence, so that the

problem might possibly be exacerbated by the approximation chosen, but the vast majority

of the studies show that the extended Kalman filter is very reliable. There are very few

studies that compare the extended Kalman filter to the exact filter calculated numerically.

C Priors and Posterior Estimates
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Parameter Notation Prior distribution

Density Mean S.D/df

Risk aversion σ Normal 2.00 0.50

Price indexation γ Beta 0.50 0.15

Calvo prices ξ Beta 0.50 0.10

Consumption habit formation hC Beta 0.50 0.20

Preference parameter ϱ Beta 0.50 0.20

Labour share α Normal 0.80 0.10

Interest rate rule

Inflation θπ Normal 2.00 0.50

Output gap θy Normal 0.125 0.05

Interest rate smoothing ρr Beta 0.80 0.10

AR(1) coefficient

Technology ρa Beta 0.85 0.10

Government spending ρg Beta 0.85 0.10

Price mark-up ρms Beta 0.50 0.20

Standard deviation of AR(1) innovations

Technology sd(ϵa) Inv. gamma 0.60 2.00

Government spending sd(ϵg) Inv. gamma 1.67 2.00

Price mark-up sd(ϵms) Inv. gamma 0.10 2.00

Standard deviation of I.I.D. shocks/mearsument errors

Mark-up process sd(ϵm) Inv. gamma 0.10 2.00

Monetary policy sd(ϵe) Inv. gamma 0.10 2.00

Observation error (inflation) sd(ϵπ) Inv. gamma 0.10 2.00

Observation error (output) sd(ϵy) Inv. gamma 0.10 2.00

Table 4: Prior Distributions
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Figure 1: Inflation Dynamics under Perfect (PI) and Imperfect Information

(II)
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Figure 2: Estimated Impulse Response Functions - AI vs. II♢

♢ Each panel plots the mean response corresponding a positive one standard deviation shock.

Each response is for a 10 period horizon. All DSGE impulse responses are computed simulating

the vector of DSGE model parameters at the posterior mean values reported in Table 5. The

impulse responses for VAR(4) are obtained using the DSGE-VAR identification procedure

described in the section 5.4. Mark-up(ms) and Mark-up(m) represent the price mark-up shocks

(persistent and transient components respectively). The area in-between the black dashed lines

covers the space between the first and ninth posterior deciles of the IRFs estimated by the VAR.
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Figure 3: Autocorrelations of Observables in the Actual Data and in the

Estimated Models
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