Discussion of

“CES Technology and Business Cycle Fluctuations”

Peter McAdam
ECB and University of Surrey

MONFISPOL CONFERENCE, November 2010
Outline

• Motivation: why the authors are doing what they're doing.
• Method: how exactly they did it.
• Outcome: what they found.
• Main Issues.
• Lesser Issues.
• Conclusions.
• **Motivation:** why the authors are doing what they’re doing.
• **Motivation:** why the authors are doing what they’re doing.

• **Method:** how exactly they did it.
• **Motivation:** why the authors are doing what they’re doing.
• **Method:** how exactly they did it.
• **Outcome:** what they found.
Outline

- **Motivation**: why the authors are doing what they’re doing.
- **Method**: how exactly they did it.
- **Outcome**: what they found.
- **Main Issues**.
Outline

• **Motivation:** why the authors are doing what they’re doing.
• **Method:** how exactly they did it.
• **Outcome:** what they found.
• **Main Issues.**
• **Lesser Issues.**
• **Motivation:** why the authors are doing what they’re doing.
• **Method:** how exactly they did it.
• **Outcome:** what they found.
• **Main Issues.**
• **Lesser Issues.**
• **Conclusions.**
Cristiano, Paul & Bo try to do the following ...

- Embed CES aggregate technology in SW-like (2007).
- Take Normalization seriously in an estimated DSGE model.
- Perform an Odds-Ratio comparison with CD based and DSGE-Var based alternatives.
Why are they trying to do this?

1. Prior that CD is overly restrictive formulation of aggregate supply.
2. Improve statistical model fit viz-a-viz the data
3. Capture key volatilities better
4. Advance the CES and *normalization* agenda.
Method

- Re-do the estimation of this “supply-augmented” SW model
- Trend for measurement variables estimated.
- DSGE & DSGE-Var framework.
- Odds-Ratio comparison.
1. Implementation of the normalized CES production function.
2. The Empirical Results: Estimation and Identification
3. Odds Ratio Result
4. Variance Decomposition
1. Implementation of the normalized CES production function.
Issues

1. Implementation of the normalized CES production function.
2. The Empirical Results: Estimation and Identification
1. Implementation of the normalized CES production function.
2. The Empirical Results: Estimation and Identification
3. Odds Ratio Result
1. Implementation of the normalized CES production function.
2. The Empirical Results: Estimation and Identification
3. Odds Ratio Result
4. Variance Decomposition
1. Implementation of the normalized CES production function.

- The point of normalization makes more sense as a data sample context, not a steady state growth point.

- Two assumptions being imposed by SS growth point: (1) that the BGP growth rate is constant (ii) that technical progress is Harrod Neutral.

- Neither of these properties hold in the data.

- Implementation of factor-augmenting CES Production should force you to think about balanced growth. If $ZK > 0$ there is no balanced growth. Plot of Labor Share proves it.
2. The Empirical Results: Estimation and Identification

- The data are uninformative about the key parameters, ρ_{zk} and e_{zk}.

- PC slope still flat.

- This study forces us into new territory and puts identification issues to the forefront (e.g., capital-augmentation vs. Investment-specific) yet very limited diagnostics presented.
Capital-Augmenting Technology Process Parameters

\[e_{ZK} \]

\[\rho_{ZK} \]
3. Variance Decomposition

- Are these decompositions for the levels or the growth rates of the observables? It matters. Technology drives the levels of, say output, but will have less impact on the difference.

- That said, some of these decompositions look big.
<table>
<thead>
<tr>
<th>Forecast horizon</th>
<th>Observable variables</th>
<th>Productivity (K)</th>
<th>Productivity (L)</th>
<th>Government spending (price)</th>
<th>Mark-up</th>
<th>Investment (wage)</th>
<th>Mark-up</th>
<th>Monetary policy</th>
<th>Preference</th>
</tr>
</thead>
<tbody>
<tr>
<td>t=1</td>
<td>Output</td>
<td>6.1 (7.1)</td>
<td>32.4 (31.9)</td>
<td>21.4 (19.4)</td>
<td>14.2 (12.6)</td>
<td>20.3 (23.3)</td>
<td>3.9 (2.9)</td>
<td>2.4 (2.8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Consumption</td>
<td>6.8 (5.0)</td>
<td>4.2 (10.0)</td>
<td>12.2 (7.2)</td>
<td>1.8 (0.9)</td>
<td>32.5 (31.6)</td>
<td>9.1 (3.9)</td>
<td>33.4 (41.4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Investment</td>
<td>5.4 (9.7)</td>
<td>0.2 (2.0)</td>
<td>24.7 (26.4)</td>
<td>51.3 (38.6)</td>
<td>14.8 (19.3)</td>
<td>1.2 (2.1)</td>
<td>2.3 (2.0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inflation</td>
<td>15.6 (12.3)</td>
<td>2.4 (12.9)</td>
<td>24.7 (13.5)</td>
<td>15.0 (30.7)</td>
<td>16.6 (3.5)</td>
<td>13.5 (17.4)</td>
<td>12.3 (9.7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Real wage</td>
<td>5.7 (3.4)</td>
<td>0.01 (2.3)</td>
<td>49.5 (33.0)</td>
<td>0.02 (0.1)</td>
<td>29.6 (32.8)</td>
<td>4.0 (0.9)</td>
<td>11.2 (7.6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interest rate</td>
<td>6.4 (7.7)</td>
<td>1.0 (8.0)</td>
<td>9.6 (6.5)</td>
<td>6.1 (18.6)</td>
<td>6.4 (1.3)</td>
<td>65.3 (51.2)</td>
<td>5.1 (6.6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hours worked</td>
<td>12.3 (12.2)</td>
<td>30.5 (30.2)</td>
<td>19.0 (17.7)</td>
<td>15.2 (11.9)</td>
<td>19.5 (22.8)</td>
<td>3.5 (2.7)</td>
<td>2.1 (2.5)</td>
<td></td>
</tr>
</tbody>
</table>

t=4	Output	6.8 (7.7)	23.8 (27.9)	25.7 (20.5)	12.5 (10.4)	25.1 (26.9)	3.0 (2.6)	3.1 (4.0)	
	Consumption	7.6 (4.9)	4.5 (10.0)	13.0 (6.9)	2.1 (1.3)	35.3 (32.1)	8.4 (3.8)	29.2 (41.0)	
	Investment	6.6 (9.9)	0.3 (2.5)	30.2 (28.6)	39.5 (30.7)	20.0 (24.6)	0.8 (1.8)	2.7 (1.9)	
	Inflation	11.4 (8.7)	2.3 (10.2)	15.5 (9.9)	25.1 (38.6)	17.5 (3.1)	16.8 (21.8)	11.4 (7.5)	
	Real wage	6.7 (3.4)	0.2 (2.4)	53.1 (33.7)	0.4 (0.4)	25.4 (50.5)	3.7 (0.9)	10.5 (8.5)	
	Interest rate	10.7 (7.0)	2.5 (12.0)	10.1 (3.4)	26.5 (53.5)	18.3 (13.7)	21.9 (15.9)	11.9 (7.0)	
	Hours worked	2.0 (2.4)	10.7 (9.5)	35.2 (31.8)	13.2 (7.9)	30.9 (46.7)	1.5 (1.1)	0.5 (0.6)	

t=10	Output	6.8 (8.3)	23.2 (27.4)	25.2 (20.22)	13.7 (11.0)	24.8 (26.5)	3.1 (2.7)	3.3 (4.0)	
	Consumption	7.6 (4.8)	4.3 (9.8)	12.8 (6.9)	3.3 (3.7)	34.3 (31.1)	8.4 (3.7)	29.4 (39.9)	
	Investment	6.3 (10.5)	0.3 (2.5)	28.4 (27.0)	42.2 (32.8)	19.1 (23.1)	0.9 (1.8)	2.9 (2.3)	
	Inflation	10.9 (8.7)	2.3 (9.9)	16.7 (10.3)	26.1 (38.5)	16.5 (4.0)	16.2 (20.8)	11.3 (7.8)	
	Real wage	6.7 (3.3)	0.2 (2.4)	51.6 (33.0)	0.4 (0.9)	26.1 (51.1)	3.9 (0.9)	11.1 (8.4)	
	Interest rate	8.6 (5.3)	3.2 (12.7)	7.9 (8.7)	41.0 (54.6)	15.5 (17.7)	14.0 (11.9)	9.8 (5.2)	
	Hours worked	1.3 (1.1)	6.0 (4.6)	41.1 (32.3)	7.1 (3.4)	43.5 (57.8)	0.6 (0.5)	0.5 (0.3)	

t=100	Output	7.1 (8.4)	22.2 (27.1)	25.4 (20.4)	13.5 (10.9)	25.7 (26.7)	3.0 (2.6)	3.2 (3.9)	
	Consumption	7.6 (4.8)	4.3 (9.8)	12.9 (7.7)	3.9 (3.8)	34.3 (31.5)	8.2 (3.6)	28.8 (38.8)	
	Investment	6.8 (10.6)	0.3 (2.6)	28.8 (27.3)	40.4 (31.9)	20.2 (23.6)	0.8 (1.7)	2.9 (2.3)	
	Inflation	10.3 (5.6)	2.6 (6.4)	18.1 (16.5)	25.2 (23.8)	18.7 (30.1)	14.8 (12.4)	10.3 (4.6)	
	Real wage	6.9 (3.3)	0.2 (2.3)	51.8 (32.5)	0.5 (1.1)	26.0 (51.8)	3.9 (0.8)	10.8 (8.1)	
	Interest rate	7.9 (3.7)	4.7 (8.0)	13.7 (18.2)	34.8 (25.2)	20.6 (37.5)	10.8 (4.9)	7.6 (2.2)	
	Hours worked	1.0 (0.4)	6.3 (2.1)	45.2 (27.5)	5.2 (1.4)	41.5 (68.3)	0.4 (0.2)	0.4 (0.1)	

Table 4: Variance Decomposition - Comparison of CD and CES Specifications (in Percent)
4. Odds Ratio

CES beats CD 100-to-1!

On the face of it, this looks really powerful!

But what concept of likelihood are you using: Laplace Approximation, MHM?

Has the Markov Chain fully converged?

Log difference is only 10. Are the authors comfortable with making such claims of dominance?
4. Odds Ratio

- CES beats CD 100-to-1!
4. Odds Ratio

- CES beats CD 100-to-1!
- On the face of it, this looks really powerful!
4. Odds Ratio

- CES beats CD 100-to-1!
- On the face of it, this looks really powerful!
- But what concept of likelihood are you using: Laplace Approximation, MHM?
4. Odds Ratio

- CES beats CD 100-to-1!
- On the face of it, this looks really powerful!
- But what concept of likelihood are you using: Laplace Approximation, MHM?
- Has the Markov Chain fully converged?
4. Odds Ratio

- CES beats CD 100-to-1!
- On the face of it, this looks really powerful!
- But what concept of likelihood are you using: Laplace Approximation, MHM?
- Has the Markov Chain fully converged?
- Log difference is only 10. Are the authors comfortable with making such claims of dominance?
• IRFs: actually relatively little difference between CES and CD alternatives.

• IRFs: hump shaped ...?

• Bayesian-Maximum Likelihood?

• “Capital-Biased technical” progress.
Figure 6: Bayesian IRFs - Labour-augmenting shock
Conclusions

• Really stimulating paper! Asks all the right questions! Wish it had occurred to me to write it before them!
• Should convince people that the convenience and centrality of Cobb-Douglas production functions in macro is obscuring important issues (especially so over b/cycle frequencies).
• Incorporating factor-augmenting CES aggregate production-technology system holds out enormous promise - better models, better understanding of the data.
• The process of implementation and identification is far from trivial.
• Really stimulating paper! Asks all the right questions! Wish it had occurred to me to write it before them!
Conclusions

• Really stimulating paper! Asks all the right questions! Wish it had occurred to me to write it before them!

• Should convince people that the convenience and centrality of Cobb-Douglas production functions in macro is obscuring important issues (especially so over b/cycle frequencies).
Conclusions

• Really stimulating paper! Asks all the right questions! Wish it had occurred to me to write it before them!

• Should convince people that the convenience and centrality of Cobb-Douglas production functions in macro is obscuring important issues (*especially so* over b/cycle frequencies).

• Incorporating factor-augmenting CES aggregate production-technology system holds out enormous promise - better models, better understanding of the data.
Conclusions

- Really stimulating paper! Asks all the right questions! Wish it had occurred to me to write it before them!
- Should convince people that the convenience and centrality of Cobb-Douglas production functions in macro is obscuring important issues (especially so over b/cycle frequencies).
- Incorporating factor-augmenting CES aggregate production-technology system holds out enormous promise - better models, better understanding of the data.
- The process of implementation and identification is far from trivial.