Dealing with Maturity: Optimal Fiscal Policy in the Case of Long Bonds

Elisa Faragliab, Albert Marcetb,d and Andrew Scottc,d

\textit{a Cambridge University, b Institut d’Anàlisi Econòmica CSIC, ICREA, UAB and BGSE, c London Business School, d CEPR}

October 2011

Abstract

We study Ramsey optimal fiscal policy under incomplete markets in the case where the government issues only long bonds of maturity $N > 1$. We find that many features of optimal policy are sensitive to the introduction of long bonds, in particular tax variability and long run behavior of debt. When government is in debt it is optimal to respond to an adverse shock by promising to reduce taxes in the distant future as this achieves a cut in the cost of debt. Hence, debt management concerns about the cost of debt override typical fiscal policy concerns such as tax smoothing. In the case when the government leaves bonds in the market until maturity we find two additional reasons why taxes are volatile due to debt management concerns: debt has to be brought to zero in the long run and there are N-period cycles. We formulate the equilibrium recursively applying the lagrangean approach for recursive contracts. Even with this approach the dimension of the state vector is very large. We propose a flexible numerical method to address this issue, the "condensed PEA", which substantially reduces the required state space. This technique has a wide range of applications. To explore issues of policy coordination and commitment we propose an alternative model where monetary and fiscal authorities are independent.

\textit{JEL Classification: C63, E43, E62, H63}

\textit{Keywords:} Computational Methods, Debt Management, Fiscal Policy, Government Debt, Maturity Structure, Yield Curve

1 Introduction

As the current European sovereign debt crisis emphasizes the maturity structure of government debt is a key variable. Deciding fiscal policy independently of funding conditions in the market is
a doomed concept: taxes, public spending, public deficits, should take into account the funding conditions in the market for bonds. Therefore debt management should not be subservient to fiscal policy and simply be in charge of "minimizing costs", fiscal policy and debt management should be studied jointly. Table 1 shows the average maturity of outstanding government debt for a variety of countries and displays clear differences across nations. Any theory of debt management needs to explain the costs and benefits for fiscal policy of varying the average maturity.

Some recent contributions have studied the interaction between debt management and taxation policy in a Ramsey equilibrium setting. Angeletos (2002), Barro (2003), Buera and Nicolini (2004) use models of complete markets. Nosbusch (2008) explores a simplified model of incomplete markets. Other contributions are mentioned further down in the paper. Furaglia, Marcell and Scott (2010) argue that optimal fiscal policy and debt management should be studied in an incomplete market setup. The current paper can be seen as a first step in this direction. We extend the setup of Aiyagari, Marcet, Sargent and Seppälä (2002), who studied optimal fiscal policy with incomplete markets and short bonds, to the case when bonds mature N periods after having been issued. We describe the behavior of optimal policy with long bonds and we show how to navigate computational problems.

Our equilibrium in our model shows some well known features of optimal fiscal policy under incomplete markets: the government tries to smooth taxes, taxes follow a near-martingal behavior, debt is used as a buffer stock to spread tax increases over all periods after an unexpected adverse shock is realized. We also find that if the government is in debt and an adverse shock occurs the government should promise to cut taxes in future periods, when the newly issued long bonds generate a payoff. These future tax cuts "twist" current long interest rates so as to reduce the burden of past debt. This means that a typical debt management concern, as is reducing the costs of debt, overrides a typical concern of fiscal policy, namely tax smoothing. This promise to cut taxes is the reason that optimal policy is time inconsistent: if the government could, it would reneg on the promise to cut taxes.

A further problem when dealing with long bonds is what decision to make about outstanding debt at the end of each period. Most of the literature assumes that the government buys back all previously issued debt and then reissues new bonds. This assumption is innocuous in models of complete markets, but it matters under incomplete markets. Furthermore, as shown in Marchesi (2004) governments rarely buy back outstanding debt before redemption. To quote the UK Debt Management Office (2003) "the UK’s debt management approach is that debt once issued will not be redeemed before maturity." For this reason we also study optimal policy when the government leaves long bonds in circulation until the time of maturity. We call this the "no buyback" case. At any moment in time the government has outstanding debt with maturity until redemption of N, N − 1 through to 1 year. The maturity profile of government debt is therefore much more complex with long bonds and no buy back and this will potentially impact debt management and fiscal policy. We find that optimal tax policy is even more volatile in this case: the government promises to cut taxes permanently and there are N−period cycles in tax policy.

Obtaining numerical simulations is not straightforward. A first difficulty is to obtain a recursive formulation of the model, we extend the recursive contracts treatment of Aiyagari et al. (2002). A second difficulty arises because the vector of state variables is typically of dimension $2N + 1$ hence
it grows rapidly with maturity: many OECD countries issue thirty year bonds, both France and
the UK issue fifty year bonds. Solving a non-linear dynamic model with these many state variables
is not feasible.\footnote{Linearization of the policy function is undesirable, as it turns out that non-linear terms play a crucial role in
determining optimal policy even near steady state mean and because of the presence of debt limits.}

To reduce the computational complexity we propose the method "condensed PEA" that reduces
the dimensionality of the state vector while allowing, in principle, for arbitrary precision. We show
how in the case of a twenty year bond the state space is effectively of only four variables. We think
this computational method has wide applicability to other models.

To explore issues of policy coordination and commitment we introduce a model where the fiscal
authority is separate from the monetary authority setting interest rates. In this way the "twisting"
of interest rates is not possible, since the fiscal authority takes interest rates as given. This setup
provides a framework to understand the role of commitment in the Ramsey policy, and in the case
with buyback it reduces the dimensionality of the state vector as the usual co-state variables of
optimal Ramsey policy are no longer present.

\begin{footnotesize}
\begin{table}[h]
\caption{Table 1}
\end{table}
\end{footnotesize}

We find that the second moments of the model are not highly dependent on maturity. In a
calibrated example allocations, interest rates and persistence of debt are similar across maturities
and across the three models of policy considered. The main difference is the long run level of debt,
as longer maturities are associated with more debt.

The structure of the paper is as follows. Section 2 outlines our main model, a Ramsey model
with incomplete markets and long bonds when the government buys back all outstanding debt
each period. Section 2 shows some properties of the model using analytic results. Section 3 studies
numerical issues, introduces condensed PEA, and it describes the behavior of the model numerically.
Section 4 studies the model of independent powers whilst Section 5 considers the case of no buyback
and a final section concludes.

\section{The Model, Analytic Results}

We now present our benchmark model. It is a Ramsey equilibrium model of policy with perfect
commitment and coordination of policy authorities. The government buys back all existing debt
each period. In sections 4 and 5 we relax these assumptions.

The economy produces a single non-storable good with a technology
\begin{equation}
\begin{aligned}
c_t + g_t & \leq 1 - x_t,
\end{aligned}
\end{equation}

for all t, where x_t, c_t and g_t represent leisure, private consumption and government expenditure
respectively. The exogenous stochastic process g_t is the only source of uncertainty. The representative
consumer has utility function:
\begin{equation}
E_0 \sum_{t=0}^{\infty} \beta^t \{ u (c_t) + v (x_t) \}
\end{equation}
and is endowed with one unit of time that it allocates between leisure and labour and faces a pro-
portional tax rate τ on labor income. The representative firm maximizes profits, both consumers
and firms act competitively by taking prices and taxes as given. Consumers, firms and government
have full information, i.e. they observe all shocks up to the current period, all variables dated t are
chosen contingent on histories $g^t = (g_t, \ldots, g_0)$. All agents have rational expectations.

Agents can only borrow and lend in the form of a zero-coupon, risk-free, N-period bond so that the
government budget constraint is:

$$g_t + p_{N-1,t}b_{N,t-1} = \tau_t (1 - x_t) + p_{N,t}b_{N,t}$$

where $b_{N,t}$ denotes the number of bonds the government issues at time t, each bond pays one unit
of consumption good in N periods time with complete certainty. The price of an i-period bond at
time t is $p_{i,t}$. In this section we assume that at the end of each period the government buys back the
existing stock of debt and then reissues new debt of maturity N, these repurchases are reflected in the
left side of the budget constraint (3).

In addition government debt has to remain within the upper and lower limits \underline{M} and \bar{M} so
ruling out Ponzi schmes e.g

$$\underline{M} \leq \beta^N b_{N,t} \leq \bar{M}$$

The term β^N in this constraint reflects the value of the long bond at steady state, so that the limits
\underline{M}, \bar{M} appropriately refer to the value of debt and they are comparable across maturities.\(^2\)

We assume after purchasing a long bond the household entertains only two possibilities: one
is to resell the government bond in the secondary market in the period immediately after having
purchased it, the other possibility is to hold the bond until maturity.\(^3\) Letting $s_{N,t}$ be the sales in
the secondary market the household’s problem is to choose stochastic processes $\{c_t, x_t, s_{N,t}, b_{N,t}\}_{t=0}^{\infty}$
to maximize (2) subject to the sequence of budget constraints:

$$c_t + p_{N,t}b_{N,t} = (1 - \tau_t) (1 - x_t) + p_{N-1,t} s_{N,t} + b_{N,t-N} - s_{N,t-N+1}$$

with prices and taxes $\{p_{N,t}, p_{N-1,t}, \tau_t\}$ taken as given. The household also faces debt limits anal-
ogous to (4), we assume for simplicity that these limits are less stringent than those faced by the
government, so that in equilibrium, the household’s problem always has an interior solution.

The consumer’s first order conditions of optimality are given by

$$\frac{v_{x,t}}{u_{c,t}} = 1 - \tau_t$$

$$p_{N,t} = \frac{\beta^N E_t (u_{c,t+N})}{u_{c,t}}$$

$$p_{N-1,t} = \frac{\beta^{N-1} E_t (u_{c,t+N-1})}{u_{c,t}}$$

\(^2\) Obviously the actual value of debt is $p_{N,t}b_{N,t}$, we substitute $p_{N,t}$ by its steady state value β^N for simplicity, nothing much changes if the limits are in terms of $p_{N,t}b_{N,t}$.

\(^3\) We need to introduce secondary market sales $s_{N,t}$ in order to price the repurchase price of the bond.
2.1 The Ramsey problem

We assume the government has full commitment to implement the best sequence of (possibly time inconsistent) taxes and government debt knowing equilibrium relationships between prices and allocations. Using (5), (6) and (7) to substitute for taxes and consumption the Ramsey equilibrium can be found by solving

\[
\max_{\{c_t, b_{N,t}\}} E_0 \sum_{t=0}^{\infty} \beta^t \{ u(c_t) + v(x_t) \}
\]

s.t. \[\beta^{N-1} E_t (u_{c,t+N-1}) b_{N,t-1} = S_t + \beta^N E_t (u_{c,t+N}) b_{N,t} \quad (8)\]

and (4), and \(x_t\) implicitly defined by (1).

To simplify the algebra we define \(S_t = (u_{c,t} - v_{x,t})(c_t + g_t) - u_{c,t}g_t\) as the “discounted” surplus of the government and set up the Lagrangian as

\[
L = E_0 \sum_{t=0}^{\infty} \beta^t \left\{ u(c_t) + v(x_t) + \lambda_t \left[S_t + \beta^N u_{c,t+N} b_{N,t} - \beta^{N-1} u_{c,t+N-1} b_{N,t-1} \right] \right.
\]

\[+ \nu_{1,t} \left(M - \beta^N b_{N,t} \right) + \nu_{2,t} \left(\beta^N b_{N,t} - M \right) \]

where \(\lambda_t\) is the Lagrange multiplier associated with the government budget constraint and \(\nu_{1,t}\) and \(\nu_{2,t}\) are the multipliers associated with the debt limits.

The first-order conditions for the planner’s problem with respect to \(c_t\) and \(b_{N,t}\) are

\[
u_{c,t} - v_{x,t} + \lambda_t (u_{c,c} c_t + u_{c,t} + v_{x,t} (c_t + g_t) - v_{x,t})
\]

\[+ u_{c,t} (\lambda_{t-N} - \lambda_{t-N+1}) b_{N,t-N} = 0 \quad (9)\]

\[E_t (u_{c,t+N} \lambda_{t+1}) = \lambda_t E_t (u_{c,t+N}) + \nu_{2,t} - \nu_{1,t} \quad (10)\]

with \(\lambda_{-1} = \ldots = \lambda_{-N} = 0\).

These FOC characterise some features of optimal fiscal policy with long bonds. Following the discussion in Aiyagari et al. we see that in the case where debt limits are not binding (10) says that \(\lambda_t\) is a risk-adjusted martingale with risk-adjustment measure \(\frac{u_{c,t+N}}{E_t (u_{c,t+N})}\), indicating that in this model the presence of the state variable \(\lambda\) in the policy function imparts persistence in the variables of the model. The term

\[\mathcal{D}_t = (\lambda_{t-N} - \lambda_{t-N+1}) b_{N,t-N}\]

in (9) indicates that a feature of optimal fiscal policy will be that what happened in period \(t - N\) has a special impact on today’s taxes. Since we have \(u_{c,t} - v_{x,t} = 0\) and zero taxes in the first best, a high \(\mathcal{D}_t\) pulls the model away from the first best and zero taxes. If \(\mathcal{D}_t > 0\) it can be thought of as introducing a higher distortion in a given period. In periods when \(g_{t-N+1}\) is very high we have that the cost of the budget constraint is high so \(\lambda_{t-N+1}\) is high, and if the government is in debt \(\mathcal{D}_t < 0\) so taxes should go down at \(t\). Of course this is not a tight argument, as \(\lambda_t\) also responds to the shocks that have happened between \(t\) and \(t - N\) and \(\lambda_t\) also plays a role in (9), but this argument is at the core of the interest rate twisting policy we identify below. In order to build up intuition for the role of commitment and to provide a tighter argument, we now show two examples that can be solved analytically.
2.2 A model without uncertainty

Assume now that government spending is constant, \(g_t = \bar{g} \). The only budget constraint of the government is

\[
\sum_{t=0}^{\infty} \beta^t u_{c,t} S_t = b_{N,-1} N^{-1}, \text{ or } \sum_{t=0}^{\infty} \beta^t S_t = b_{N,-1} \beta^{N-1} u_{c,N-1}
\]

where \(S_t = \frac{S_t}{u_{c,t}} \) is the "non-discounted" surplus of the government. This shows that for a given set of surpluses the funding costs of initial debt \(b_{N-1} > 0 \) can be reduced by manipulating consumption such that \(c_t < c_{N-1} \) for all \(t \neq N \). As long as the elasticity of consumption with respect to wages is positive, as occurs with most utility functions, this can be achieved by setting

\[
\tau_t = \tau \text{ for all } t \neq N - 1
\]

This achieves a reduction of \(u_{c,N-1} \), reducing the cost of outstanding debt. In other words, the long end of the yield curve (the interest rate in period \(t = 0 \) of maturity \(N - 1 \)) needs to be twisted up.4

Interestingly, even though there are no fluctuations in the economy, (12) shows that optimal policy implies that the government desires to introduce variability in taxes. In other words, optimal policy violates tax smoothing.

This policy is clearly time inconsistent, if the government is able to reoptimize by surprise at some period \(t' > 0, t' < N \) it will then promise instead a cut in taxes in period \(t' + N - 1 \).

2.3 A model with uncertainty at \(t = 1 \)

The previous subsection abstracted from uncertainty. We now introduce uncertainty into our model. In the interest of obtaining analytic results we assume uncertainty occurs only in the first period, ie \(g \) is given by5:

\[
\left\{ \begin{array}{l}
g_t = \bar{g} \quad \text{for } t = 0 \text{ and } t \geq 2 \\
g_1 \sim F_g
\end{array} \right.
\]

for some non-degenerate distribution \(F_g \). Since future consumption and \(\lambda \)'s are known the martingale condition implies \(u_{c,t+N} \lambda_{t+1} = \lambda_t u_{c,t+N} \) and

\[
\lambda_t = \lambda_1 \quad t > 1
\]

4This is, of course, a manifestation of the standard interest rate manipulation already noted by Lucas and Stokey (1983), except that in our case the twisting occurs in \(N \) periods.

5Formally this economy is very similar to that of Nosbusch (2008).
It is clear that in the case of short bonds $N = 1$ equilibrium implies c_t and τ_t constant for $t \geq 2$, reflecting the fact that even though markets are incomplete the government smooths taxes after the shock is realized.

For the case of long bonds when $N > 1$, the FOC with respect to consumption (9) are satisfied for $D_t = (\lambda_{t-N} - \lambda_{t-N+1}) b_{N,t-N}$

\[
D_t = 0 \quad \text{for } t \geq 0 \text{ and } t \neq N - 1, N
\]

\[
D_{N-1} = \lambda_0 b_{N,-1}, \quad D_N = (\lambda_0 - \lambda_1) b_{N,0}
\]

Hence equilibrium satisfies

\[c_t = c^*(g_1) \quad \text{for } t \geq 2 \text{ and } t \neq N, N - 1\]

for a certain function c^*. I.e consumption is the same in all periods $t \geq 2$ and $t \neq N, N - 1$, although this level of constant consumption depends on the realization of the shock g_1. Clearly, c_{N-1}, c_N also depend on the realization of g_1.

Therefore there is more tax volatility than in the case of short bonds: taxes vary in periods at periods $N - 1$ and N, even though by the time the economy arrive at these periods no more shocks have occurred for a long time.

2.3.1 An Analytic Example

To make this argument precise consider the utility function

\[
\frac{c_t^{\gamma_c}}{1 - \gamma_c} - B \frac{(1 - x_t)^{1+\gamma_l}}{1+\gamma_l}
\]

for $\gamma_c, \gamma_l, B > 0$.

Result 1 Assume utility (16) and $b_{N,-1} > 0$.

For a sufficiently high realization of g_1 we have\n
\[
\tau_1 = \tau_t \quad \text{for all } t \geq 1, t \neq N - 1, N
\]

\[
\tau_1 > \tau_{N-1}, \tau_N
\]

The inequalities are reversed if $b_{N,-1} < 0$ or if the realization of g_1 is sufficiently low.

Proof

Since $\lambda_t = \lambda_1$ for $t > 1$ the FOC of optimality yield

\[
\frac{u_{c,t}}{v_{x,t}} - \frac{B + (\gamma_l + 1)\lambda_1}{(1 + (1+\gamma_c + 1)\lambda_1) B} + (\lambda_{t-N} - \lambda_{t-N+1}) F_t = 0 \quad \text{for } t \geq 1
\]

where $F_t \equiv \frac{u_{pec,b_{N,t-N}}}{(1+(-\gamma_c+1)\lambda_1)B}$.

7
Consider \(t = 1 \). For any long maturity \(N > 1 \) we have that \(\lambda_{t-N} = \lambda_{t-N+1} = 0 \) when \(t = 1 \) so that

\[
\frac{u_{c,1}}{v_{x,1}} = \frac{B + (\gamma + 1)\lambda_1}{(1 + (-\gamma + 1)\lambda_1)B}
\] (17)

Therefore we can write

\[
\frac{u_{c,t}}{v_{x,t}} - \frac{u_{c,1}}{v_{x,1}} = (\lambda_{t-N+1} - \lambda_{t-N})F_t = 0 \quad \text{for } t \geq 1
\] (18)

That \(\tau_t = \tau_1 \) for all \(t > 1 \) and \(t \neq N - 1, N \) follows from (15).

Now we show that \(F_t < 0 \) for \(t = N - 1, N \). Since \(\lambda_1, B, \gamma > 0 \) we have that \(B + (\gamma + 1)\lambda_1 > 0 \). Since \(u_{c,1}, v_{x,1} > 0 \) clearly (17) implies that \((1 + (-\gamma + 1)\lambda_1)B > 0 \). Since we consider the case of initial government debt \(b_{N,-1} > 0 \) this leads to \(b_{N,0} > 0 \) and since \(u_{c,1} < 0 \) we have \(F_t < 0 \) for \(t = N - 1, N \).

Since for \(t = N - 1 \) we have \(\lambda_{t-N} - \lambda_{t-N+1} = -\lambda_0 < 0 \) it follows

\[
\frac{u_{c,N-1}}{v_{x,N-1}} < \frac{u_{c,1}}{v_{x,1}} \Rightarrow \tau_{N-1} < \tau_t \quad \text{for all } t > 1, t \neq N - 1, N.
\]

Also, it is clear from (17) that high \(g_1 \) implies a high \(\lambda_1 \). Since the martingale condition implies \(E_t (u_{c,N}\lambda_1) = \lambda_0 E_0 (u_{c,N}) \) for slightly high \(g_1 \) we have \(\lambda_1 > \lambda_0 \). Therefore, for \(t = N \) and if \(g_1 \) was high enough we have \(\lambda_{t-N} - \lambda_{t-N+1} = \lambda_0 - \lambda_1 < 0 \) so that (18) implies

\[
\frac{u_{c,N}}{v_{x,N}} - \frac{u_{c,N-1}}{v_{x,N-1}} < \frac{u_{c,1}}{v_{x,1}} \Rightarrow \tau_N > \tau_{N-1} < \tau_1 \quad \blacksquare
\]

Intuitively, in period \(t = N - 1 \) there is a tax cut for the same reasons as in section 2.2. New in this section is the tax cut (for high \(g_1 \)) at \(t = N \). The intuition for this is clear: when an adverse shock to spending occurs at \(t = 1 \) the government uses debt as a buffer stock so \(b_{N,1} > b_{N,0} \), as this allows to smooth taxes by financing part of the adverse shock with higher future taxes. But since future surpluses are higher than expected as the higher interest has to be serviced, the government can lower the cost of existing debt by announcing a tax cut in period \(N \), since this will reduce the price \(p_{N-1,0} \) of period \(t = 1 \) outstanding bonds \(b_{N,0} \). The tax cut at \(t = N \) is a stochastic analog of the tax cut described in section 2.2.

2.3.2 Contradicting Tax Smoothing

The above result shows that in this model tax policy is subordinate to debt management. In models of optimal policy the government usually desires to smooth taxes. Taxes would be constant in the above model if the government had access to complete markets. But we find that the government increases tax volatility in period \(N \), long after the economy has received any shock. Therefore, government forfeits tax smoothing in order to enhance a typical debt management concern as is reducing average cost of debt.

Obviously this policy is time inconsistent: if the government could unexpectedly reoptimize in period \(t = 2 \) given its debt \(b_{N,1} \) it would reneg on the promise to cut taxes in period \(N \), instead it would promise to lower taxes in period \(N + 1 \).
It is clear from this discussion that what will matter for the policy function is the term $D_N = (\lambda_0 - \lambda_1)b_{N,0}$. Therefore it is the interaction between past λ’s and past b’s that determines the size and the sign of today’s tax cut. A linear approximation to the policy function would fail to capture this feature of the model and it would be quite inaccurate.

To summarize, we have proved that in the presence of an adverse shock to spending the government has to take three actions: i) increase taxes permanently, ii) increase debt, iii) announce a tax cut when the outstanding debt matures. Effects i) and ii) are well known in the literature of optimal taxation under incomplete markets, effect iii) is clearly seen in this model with long bonds since the promise is made N periods ahead. Obviously in the case of short maturity $N = 1$ of Aiyagari et al. the effect of D_1 would be felt in deciding optimally τ_1, but this effect would be confounded with the fact that g_1 is stochastic, so effect iii) is harder to see in a model with short bonds.

3 Optimal Policy, Simulation Results

We now turn to the case where g_t is stochastic in all periods. As is well known analytic solutions of this type of models is unfeasible, so we use numerical results. The objective is to compute a stochastic process $\{c_t, \lambda_t, b_{N,t}\}$ that solves the FOC of the Ramsey planner, namely (8), (9) and (10). First we obtain a recursive formulation that makes computation possible, then we describe a method for reducing the dimensionality of the state space and finally we discuss the behaviour of the economy.

Alternative approaches have arrived at quantitative implications for incomplete markets by limiting the length of bonds to be considered (Lustig, Sleet and Yeltekin (2009)6)

3.1 Recursive Formulation

Using the recursive contract approach of Marcet and Marimon (2011) the lagrangean can be rewritten as:

$$L = E_0 \sum_{t=0}^{\infty} \beta^t \left\{ u(c_t) + v(x_t) + \lambda_t S_t + u_{c,t} (\lambda_{t-N} - \lambda_{t-N+1}) b_{N,t-N} + \nu_{1,t} (M - \beta^N b_{N,t}) + \nu_{2,t} (\beta^N b_{N,t} - M) \right\}$$

for $\lambda_{-1} = ... = \lambda_{-N} = 0$.

Assuming g_t is a Markov process, as suggested by the form of this lagrangean, corollary 3.1 in Marcet and Marimon (2011) implies that the solution of the model satisfies the following recursive

6Lustig, Sleet and Yeltekin (2009) offer a very detailed model but restrict themselves to the case of $n=7$. The UK government classifies all debt of 7 years or less maturity as "short term debt".
structure7
\[
\begin{bmatrix}
 b_{N,t} \\
 \lambda_t \\
 c_t
\end{bmatrix}
= F(g_t, \lambda_{t-1}, ..., \lambda_{t-N}, b_{N,t-1}, ..., b_{N,t-N})
\]
\[\lambda_{-1} = ... = \lambda_{-N} = 0, \text{ given } b_{N,-1}\]

for a time-invariant policy function \(F \). This allows for a simpler recursive formulation than the promised utility approach, as the co-state variables \(\lambda \) do not have to be restricted to belong to the set of feasible continuation variables.

The state vector in the recursive formulation just found has dimension \(2N + 1 \). It is unlikely that further reductions in this dimension can be achieved purely by theoretical results. Some authors have modelled long bonds as perpetuities with decaying coupon payments where the rates of decay mimic differences in maturity (Woodford (2001), Broner, Lorenzoni and Schmulker (2007), Arellano and Ramanarayanan (2008)). Modelling bond payoffs in this way would yield smaller state vector, but most governments issue long bonds where most of the payoff occurs at the time of maturity as in our model. Since we wish to introduce in the model the type of assets actually used by governments we stay with the zero-coupon bond.8

3.2 The Condensed PEA

We wish to find non-linear solutions, first because the debt limits are likely to be occasionally binding if we want to keep debt at levels similar to those observed in the real world, second because per our discussion at the end of section 2.3 a linear approximation of the policy function \(F \) will miss some key aspects of optimal policy. Since bonds of maturity \(N = 10, 30 \) or 50 years are not uncommon a non-linear rapidly becomes intractable for a state vector of dimension \(2N + 1 \).

To overcome this difficulty we introduce a solution method based on the Parameterized Expectation Algorithm of den Haan and Marcet (1990). This will allow to reduce the dimensionality of the policy function actually solved for while keeping an accurate solution. Using PEA is useful because it does capture the relevant non-linearities described in section 2.3 even if the expectations are parameterized as linear functions and because it allows for a natural space reduction method that we call "condensed PEA". This method goes as follows.

Denote the state vector as \(X_t = (g_t, \lambda_{t-1}, ..., \lambda_{t-N}, b_{N,t-1}, ..., b_{N,t-N}) \). The idea is that even though theoretically all elements of \(X_t \) are necessary in determining decision variables at \(t \), it is unlikely that in the steady state distribution each and everyone of the variables in \(X_t \) plays a huge role in determining the solution, most likely some function of these lags will be sufficient to summarize the features from the past that need to be remembered by the government in order to take an optimal decision. In the context of PEA this can be expressed in the following way.

7In this model it is possible to reduce the state space even further by recognising that the only relevant state variables are \(N \) lags of \(s_t = b_{N,t} (\lambda_t - \lambda_{t-1}) \). We do not exploit this feature of the model as it is very specific to this version of the model. For example, the no buyback case of section 5 needs all state variables.

8One justification for assuming a decaying payoff is that it mimicks a bond portfolio with fixed shares that decay with maturity. Since our ultimate goal is to build a model of debt management, where the object is precisely to study the appropriate portfolio weights, assuming fixed portfolio weights would be inappropriate.
One of the expectations we need to approximate is

$$E_t \{ u_{c,t+N} \}$$ \hspace{1cm} (20)

appearing in (10). This expectation is a function, in principle, of all elements in X_t, but it is likely that in practice a few linear combinations of X_t may be sufficient to predict $u_{c,t+N}$ almost as well as the whole vector X_t. There are two reasons for this. First, the very structure of the model suggests that elements of X_t are very highly correlated with each other, suggesting that a few linear combinations of X_t have as much predictive power as the whole vector. Another way of saying this is that it is enough to project any variable on the principal components of X_t. Other methods available for reducing the dimensionality of state vectors have emphasized this aspect.

The second reason is that some principal components of X_t may be irrelevant in predicting $u_{c,t+N}$ in equilibrium and, therefore, they can be left out of the approximated conditional expectation. So the goal is to include only linear combinations of X_t that have some predictive power for $u_{c,t+N}$; the remaining linear combinations can be understood as appearing in the conditional expectation with a coefficient of zero.

More precisely, we partition the state vector into two parts: a subset of n state variables $\{X_t^{\text{core}}\} \subset \{X_t\}$, where $n < 2N + 1$ is small and an omitted subset of state variables $\{X_t^{\text{out}}\} = \{X_t\} - \{X_t^{\text{core}}\}$ of dimension $1 + 2N - n$. We first solve the model including only X_t^{core} in the parameterized expectations. If the error $\phi_{t+N} = u_{c,t+N} - E_t \{ u_{c,t+N} \}$ found using core variables is unpredictable with X_t^{out} we would claim the solution with core variables is the correct one. If X_t^{out} can predict this error we then find the linear combination of X_t^{out} that has the highest predictive power for ϕ_{t+N}. We add this linear combination to the set of state variables, solve the model again with this sole additional state variable, check if X_t^{out} can predict ϕ_{t+N} and so on.

Formally, given set of core variables we define the condensed PEA as follows.9,10

Step 1 Parameterize the expectation as

$$E_t \{ u_{c,t+N} \} = (1, X_t^{\text{core}}) \cdot \beta^1$$ \hspace{1cm} (21)

Find values for $\beta^1 \in \mathbb{R}^{n+1}$ that satisfy the usual PEA fixed point denoted $\beta^{1,f}$, i.e., the series generated by $(1, X_t^{\text{core}}) \cdot \beta^{1,f}$ causes this to be the best parameterized expectation.

This solution is of course based on a restricted set of state variables. It is therefore necessary to check if the omission of X_t^{out} affects the approximate solution. The next step orthogonalizes the information in X_t^{out}, this will be helpful to arrive at a well conditioned fixed point problem in Step 4.

Step 2 Using a long run simulation run a regression of each element of X_t^{out} on the core variables. Let $X_{i,t}^{\text{out}}$ be the i–th element, we run the regression

$$X_{i,t}^{\text{out}} = (1, X_t^{\text{core}}) \cdot b_i^1 + u_{i,t}^1$$

9This definition assumes we are interested in the steady state distribution, of course it could be modified in the usual way to take into account transitions.

10For convenience we describe these steps with reference only to the expectation $E_t \{ u_{c,t+N} \}$. In practice the expectations $E_t \{ u_{c,t+N} x_{t+1} \}$ and $E_t \{ u_{c,t+N-1} \}$ appearing in the FOC also need to be parameterized concurrently and the steps need to be applied jointly to all conditional expectations.
\[b_i^1 \in \mathbb{R}^{2N+2-n} \]

and calculate the residuals

\[X_{i,t}^{\text{res,1}} = X_{i,t}^{\text{out}} - (1, X_i^{\text{core}}) \cdot b_i^1. \]

(22)

It is clear that \(X_{i,t}^{\text{res,1}} \) adds the same information to \(X_i^{\text{core}} \) as \(X_{i,t}^{\text{out}} \), but \(X_{i,t}^{\text{res,1}} \) has the advantage that it is orthogonal to \(X_i^{\text{core}} \).

Step 3 Using a long run simulation find \(\alpha^1 \in \mathbb{R}^{n+1} \) such that

\[\alpha^1 = \arg \min_{\alpha} \sum_{t=1}^{T} (u_{c,t+N} - X_i^{\text{core}} \cdot \beta^1 - X_i^{\text{res,1}} \cdot \alpha)^2 \]

(23)

If \(\alpha^1 \) is close to zero the solution with only \(X_i^{\text{core}} \) is sufficiently accurate and we can stop here. Otherwise go to

Step 4 Apply PEA adding \(X_i^{\text{res,1}} \cdot \alpha^1 \) as a state variable, ie parameterizing the conditional expectation as

\[E_t \{ u_{c,t+N} \} = (X_i^{\text{core}}, X_i^{\text{res,1}}, \alpha^1) \cdot \beta^2 \]

where \(\beta^2 \in \mathbb{R}^{n+2} \). Find a fixed point \(\beta^{2,f} \) for this parameterized expectation. Since \(\beta^{1,f} \) is a fixed point, since \(X_i^{\text{core}} \) and \(X_i^{\text{res,1}} \) are orthogonal and since the linear combination \(\alpha^1 \) has high predictive power it makes sense to use as initial condition for the iterations of the fixed point

\[\beta^{2,f} \]

\[(n+2) \times 1 \]

Go to Step 2 with \((X_i^{\text{core}}, \alpha^1 X_i^{\text{res,1}}) \) in the role of \(X_i^{\text{core}} \), find a new linear combination, etc.

A couple of remarks end this subsection. In the presence of many state variables it has been customary in dynamic economic models to try each state variable in order. The idea is to add state variables one by one until the next variable does not change much the solution found. For example, if many lags are needed we add the first lag, then the second lag, and so on. If at some step the solution changes very little it is claimed that the solution is sufficiently accurate. But it is easy to find reasons why this argument may fail. Maybe the some variable further down the list is more relevant. This is the case, by the way, in our model, where state variable \(\lambda_{t-N} \) and \(b_{N,t-N} \) play a key role in determining the solution at \(t \). Or it can be that all the remaining variables together make a difference but they do not make a difference one by one. Our method gives a chance to all these variables to make a difference in the solution, therefore it is more efficient in finding relevant

11 For another example, incomplete market models with a large number of agents need as state variable all the moments of the distribution of agents, which is an infinite number of state variables. Usually these models are solved first by using the first moment as a state variable, and checking that if the second moment is added nothing much changes. But it could be, of course, that the third or fourth moment are the relevant ones, specially since the actual distribution of wealth is so skewed.
state variables, as Step 3 indicates automatically if they are needed and which of them are to be introduced.

The whole argument in this section is made for linear conditional expectations as in (21). Of course the same idea works for higher-order terms. In order to check the accuracy for higher order terms one can use condensed PEA with the higher-order polynomial terms, ie one can check if linear combinations of, say, quadratic and cubic terms of X_t have predictive power in Step 2, include these in X^{out}_t and go through Steps 2 to 4 above.

The variables included in X^{core}_t are not the only ones influencing the solution. Due to the nature of PEA past variables can have an effect even if they are excluded from the parameterized expectation. For example, even if we find a solution $X^{\text{core}}_t = (\lambda_{t-1}, b_{N,t-1}, g_t)$ that excludes λ_{t-N} and $b_{N,t-N}$ from the parameterized expectation these state variables will influence the solution at t through their presence in (9).

3.3 Solving the Model with Condensed PEA

The utility function (16) was convenient for obtaining the analytic results of section 2.3. In this section we use a utility function more commonly used in DSGE models:

$$c_{t}^{1-\gamma_1} - \gamma_1 t^{1-\gamma_2} + \gamma_2 x_{1}^{1-\gamma_2}$$

We choose $\beta = 0.98$, $\gamma_1 = 1$ and $\gamma_2 = 2$. The choice of discount factor implies we think of a period as one year. We set η such that if the government’s deficit equals zero in the non stochastic steady state agents work a fraction of leisure of 30% of the time endowment.

For the stochastic shock g we assume the following truncated AR(1) process:

$$g_t = \begin{cases} \mathcal{G} & \text{if } (1 - \rho) g^* + \rho g_{t-1} + \varepsilon_t > \mathcal{G} \\ g & \text{if } (1 - \rho) g^* + \rho g_{t-1} + \varepsilon_t < g \\ (1 - \rho) g^* + \rho g_{t-1} + \varepsilon_t & \text{otherwise} \end{cases}$$

We assume $\varepsilon_t \sim N(0, 1.44)^2$, $g^* = 25$, with an upper bound \mathcal{G} equal to 35% and a lower bound $g = 15\%$ of average GDP and $\rho = 0.95$. \mathcal{M} is set equal to 90% of average GDP and $\overline{M} = -\mathcal{M}$.

We choose $X^{\text{core}}_t = (\lambda_{t-1}, b_{N,t-1}, g_t)$ hence $X^{\text{out}}_t = (b_{N,t-2}, ..., b_{N,t-N}, \lambda_{t-2}, ..., \lambda_{t-N})$. To test if sufficient variables are included for an accurate solution in Step 3 we use as our tolerance statistic:

$$\text{dist} = \frac{R^2_{\text{aug}} - R^2}{R^2}$$

where R^2 and R^2_{aug} denote the goodness of fit of the original regression based on the condensed PEA and augmented with the linear combination of residuals respectively. We use for tolerance criterion $\text{dist} \leq 0.0001$. Table 2 summarizes the number of linear combinations needed for each maturity whilst Table 3 gives details and shows the number of linear combinations needed for each approximations and the R^2 and dist.

The advantages of the condensed PEA are readily apparent. In nearly half the cases the core variables are sufficient to solve the model at most only one linear combination of omitted variables
required to improve accuracy. Clearly the condensed PEA can be used to solve models with large state spaces with relatively small computational cost, since the state vector is in principle of dimension 41 but a dimension of 4 is enough. Whilst we have focused on a case of optimal fiscal policy and debt management this methodology clearly has much broader applications to models with large state spaces.

HERE TABLES 2 AND 3

3.4 Optimal Policy, the Impact of Maturity

3.4.1 Interest Rate Twisting

We compute the policy functions and display the implied response function of some key variables to an unexpected shock in g_t in Figures 1 and 2. The vertical axis is in units of each of the variables and in deviations from the value that would occur for the given initial condition and if $g_t = g^s$.

Figure 1 is for the case when the government has zero debt on impact. It shows minor differences between long and short bonds. As usual in models of incomplete markets it is optimal to use debt as a buffer stock, debt has a lot of persistence.

HERE FIGURE 1

Figure 2 shows the same impulse response functions when we assume the government is in debt, more precisely $b_{N,t-1} = 0.5 \frac{y^s}{\beta^N}$ where y^s is output in steady state.

HERE FIGURE 2

We see that with long bonds of maturity $N = 10$ there is a blip in taxes at the time of maturity of the outstanding bonds. This is a reflection of the promise to cut taxes with the aim to twist interest rates as we discussed in section 2.3, so all the comments we made in that section apply here, only that now the interest rate twisting occurs each period that there is an adverse shock. Namely, this promise to cut taxes influences interest rates so as to reduce the cost of outstanding debt, the government does not wish to smooth taxes and it is the reason that policy is time inconsistent.

3.4.2 Optimal Policy with Short Bonds

This discussion helps to understand the role of commitment in the model of short bonds as in Aiyagari et al. Let us consider throughout this paragraph the case when the government is in debt when an adverse shock occurs, as in Figure 2. As we explained in section 2.3 optimal policy is to increase current taxes but to promise a tax cut in $N - 1$ periods. In the case of long bonds the promised tax cut is clearly distinct from the current increase in taxes. But in the case of short bonds $N = 1$ the two effects are confounded as they happen in the same period.

\footnote{Since debt has a lot of persistence, to ensure we visit all possible realizations in the long run simulations of PEA we initialize the model at 9 different initial conditions, simulate it for 5000 periods for each initial condition, we do this 1000 times per initial condition, and we compute conditional expectations discarding the first 500 observations for each simulation.}
This is clearly seen in the response of taxes depicted in Figure 3 for maturities $N = 1, 5, 10, 20$. Given our previous discussion it is clear why the blip in taxes keeps moving to the left as we decrease the maturity until the blip simply reduces the reaction of taxes on impact at $N = 1$. Therefore optimal policy for short bonds is to increase taxes on impact but less than would be done if considerations of interest rate twisting were absent.

In the case the government has assets the blip in taxes goes upwards, as the government desires to increase the value of assets. This is shown in the response of taxes for the case of assets shown in figure 4. So, comparing the dashed lines in the response of taxes in Figures 2 and 4 it is clear that for short bonds the increase in taxes on impact if the government initially has assets is much larger than if the government is in debt.

Here Figures 3 and 4

3.4.3 The Level of Debt, Persistence

Table 4 shows second moments for the economy at steady state distribution for different maturities. Most of the moments only differ only to the second or third decimal place across maturities. The main exception are the levels of debt and deficit: the government on average holds assets but less under longer maturity. The value of assets when bonds are of 20 years halves the average debt for short bonds.

The intuition for the lower level of assets as maturity grows is the following. It is is well known that in models of optimal policy with incomplete markets, if the government has the same discount factor as agents the government accumulates assets in the long run. More precisely, it is easy to extend the results in Aiyagari et (2002) section III for the case of a linear utility of consumption $u(c) = c$ to prove that government assets go to a very high level. Therefore it is not surprising that all steady states for debt have a negative mean. On the other hand it is also well known that with long bonds fiscal insurance recommends that the government issues long bonds. As argued in Angeletos (2002) and Buera and Nicolini (2004) governments should issue long bonds in a model without capital accumulation because long interest rates are higher when the government runs deficits, so that issuing long bonds provides fiscal insurance. Nosbusch (2008) argues that the same tendency for issuing long debt is present in an incomplete markets model. For the same reason if a government accumulates debt in long bonds the implied volatility of taxes will be higher. It is therefore not surprising that long run debt is lower for longer maturities, as holding long bonds causes taxes to be more volatile. In other words, accumulating assets of long maturity is detrimental to fiscal insurance. This is not the case with short bonds, since they provide fiscal insurance when issued. Therefore the level of assets is lower for longer maturities.

Given that average asset holdings are lower, it is natural that average primary deficits are lower for higher N, since the value of assets is equal to the expected present value of primary deficits also under incomplete markets. For this reason, also, taxes are higher in steady state for higher N.

Here Table 4

Another way of examining the impact of varying the average maturity of debt is to see whether this influences how close to the complete market outcome these incomplete market models can get.
Marcet and Scott (2009) show that measures of relative persistence are a good way of assessing the extent of market incompleteness and so Figure 5 shows for various variables the measure:

\[p_k^y = \frac{\text{Var}(y_t - y_{t-k})}{k\text{Var}(y_t - y_{t-1})}. \]

The closer to 0 this measure the less persistence the variable shows whereas the closer to 1 the measure the more the variable shows unit root persistence. Although the long bond model shows less persistence, suggesting that in the case of persistent government expenditure shocks issuing longer bonds helps provide more fiscal insurance, the difference between the two cases are minor. Given that taxes are distortionary we are not in a Modigliani-Miller world and how the government finances its expenditure can affect the real economy. However the fact that the differences across maturities are so small is perhaps not surprising. With the government only issuing one type of bond in each case and the yield curve showing broadly similar behaviour at different maturities the tax smoothing properties of debt issuance is achieved mainly through the role of debt as a buffer rather than through fiscal insurance. Further we are at this point following the rest of the literature in assuming that every period the government buys back all existing debt and then reissues. So although the government is issuing 10 period bonds it always buys them back after a year so is effectively always borrowing through one period debt, reducing the distinction between 1 period and 10 period bonds. We shall return to this issue in a later section.

4 Independent Powers

In sections 2 and 3 we found that full commitment implied a tight connection between interest rate policy, debt management and tax policy: when government is in debt and spending is high the government promises a tax cut in \(N-1 \) periods, knowing that this will increase future consumption and this increases long interest rates in the current period. The reader may think that this optimal policy is not relevant for the "real world" for at least two reasons: first, different authorities influence interest rates and fiscal policy, it is unlikely that they will coordinate in the way described before, second, it is unlikely that governments can commit to a tax cut in the distant future and actually make it. Some papers in the literature react to this type of criticisms by writing down models where government policy is discretionary. But assuming that the government has no possibility of committing is also problematic, as indeed governments do things all the time just because they committed to doing them.

For these reasons we change the way policy is decided in this model. We relax the assumption of perfect coordinatino and assume the presence of a third agent, a monetary authority that fixes interest rates in every period. This is a different power from the fiscal authority, who now takes interest rates as given and implements optimal policy given these interest rates. We then examine an equilibrium where the two policy powers play a dynamic Markov Nash equilibrium with respect to the strategy of the other policy power and they both play Stackelberg leaders with respect to the consumer. More precisely , ie the fiscal authority chooses taxes and debt given a sequence for
interest rates, the monetary authority simply chooses interest rates that clear the market and the fiscal authority maximizes the utility of agents.

This assumption sidesteps the issues of commitment, now there is no room for interest rate twisting on the part of the fiscal authority.

It is easy to think of models where even if the monetary authority is independent it can not deviate too much from equilibrium interest rates of the flexible price model, therefore we take a limit case and assume that the monetary authority simply sets in equilibrium interest rates as:

\[
p_{N,t} = \frac{\beta^N E_t (u_{c,t+N})}{u_{c,t}}
\]

\[
p_{N-1,t} = \frac{\beta^{N-1} E_t (u_{c,t+N-1})}{u_{c,t}}.
\]

given agents’ consumption. Now the fiscal authority will not be able to manipulate interest rates, so it will loose any interest in making promises to cut future taxes.

Another advantage of this model is that the Markov equilibrium property implies that the state vector is just \((g_t, b_{N,t-1})\). There is no reason now for longer lags to enter this state vector, as past Lagrange multipliers do not play a role.

In other words, we look for an interest rate policy function \(R: R^2 \rightarrow R^2\) such that if gross long interest rates at period \(t\) are given by

\[
(p_{N,t}^{-1}, p_{N,t-1}^{-1}) = R(g_t, b_{N,t-1})
\]

then (24) holds and when the fiscal authority maximizes utility of the consumer knowing all market equilibrium conditions but taking the stochastic process for interest rates as given it chooses a bond policy such that (25) holds. For the fiscal authority the problem now is a standard dynamic programming problem and as a result the state space now only consists of the variables \(b_{N,t-1}\) and \(g_t\).

In this case of independent powers the Lagrangian of the Ramsey planner becomes

\[
L = E_0 \sum_{t=0}^{\infty} \beta^t \{ u(c_t) + v(x_t) + \lambda_t [S_t + p_{N,t}b_{N,t} - p_{N,t-1}b_{N,t-1}] \\
+ \nu_{1,t} (M - \beta^N b_{N,t}) + \nu_{2,t} (\beta^N b_{N,t} - M) \}
\]

The first order condition with respect to consumption becomes

\[
u_{c,t} - v_{x,t} + \lambda_t (u_{cc,t} c_t + u_{c,t} + v_{xx,t} (c_t + g_t) - v_{x,t}) + u_{cc,t} \lambda_t (p_{N,t} b_{N,t} - p_{N-1,t} b_{N-1,t}) = 0
\]

and using the government’s budget constraint gives

\[
u_{c,t} - v_{x,t} + \lambda_t (u_{cc,t} c_t + u_{c,t} + v_{xx,t} (c_t + g_t) - v_{x,t}) + u_{cc,t} \lambda_t \left(g_t - \left(1 - \frac{v_{x,t}}{u_{c,t}} \right) (1 - x_t) \right) = 0
\]

To see the impact of Independent Powers we calibrate the model as in Section 3 and consider the case where \(N = 10\). Figure 6 compares the impulse responses to a one standard deviation shock
to the innovation in the level of government spending when the government has debt between independent powers and the benchmark model of Section 3. As can be seen the model of independent powers does not show the blip in taxes at maturity. In this case debt management is subservient to tax smoothing, debt management just tries to lower the variance of deficit.

Here Figure 6

We can compare our independent powers model with one where debt managers engage in interest rate twisting to better understand the magnitude of this effect. We simulated the model at different time horizons $T = 40$, $T = 200$ and $T = 5000$ discarding the first 500 periods. We calculated the standard deviation of taxes for each realizations and we averaged it across simulations. We repeat the same exercise for $N = 2, 5, 10, 15, 20$. Figure 7 shows the results.

Here Figure 7

In shorter sample periods the effect of twisting interest rates in connection with initial period debt is significant and provides a higher level of tax volatility in the benchmark model. As we increase the sample size the initial period effect diminishes.

The second moments of the model in this section are shown in Table 5. They are extremely similar to those of the benchmark model in Table 4. We have essentially a very similar amount of bond issuance, debt persistence, tax smoothing etc, the only difference being that the interest rate twisting adds some tax volatility, but this volatility only shows up in second moments with short samples as shown in Figure 7. We conclude that the model of independent powers may be a good model to have in the toolkit as it retains many of the interesting features of the Ramsey models, it has the same steady state moments, it avoids the technicalities arising from the very large state vector and it avoids discussion on the role to commitment at very long horizons. There are, however, issues of tax volatility showing up in small samples where the two models differ.

Here Table 5

5 No Buy Back

With long bonds the government has a choice to make at the end of every period. It can buy back the N period bonds issued last period as assumed in sections 2 and 3. Alternatively it can leave some or all of the outstanding bonds in circulation until they mature. In models of complete markets whether or not there is buyback is immaterial, all prices and allocations remain unchanged. But in this paper there are two reasons why the outcome is different. The first reason is that the stream of payoffs generated by each policy is quite different from the point of view of the government: with buyback the bond pays the random payoff $p_{N-1,t+1}$ next period; if the bond is left in circulation until maturity the bond pays 1 with certainty at $t+N$. As is well known, under incomplete markets not only the present value of payoffs of an asset are relevent, the timing of payoffs also matters. A second reason for the differences is that the possibilities for governments to twist interest rates are different.
In section 2 we made the extreme assumption that the government each period buys back the whole stock of outstanding bonds issued last period. As shown in Marchesi (2004) it is normal practice for governments not to buyback debt - debt is issued and it is paid off at maturity. In this section we assume that bonds are left to mature (what we call no buyback).

In the case of buyback there are only N-period bonds outstanding. In the case of no buyback there exist bonds at all maturities between 1 and N even though the government only issues N period bonds. Exactly why no buyback is standard practice13 is beyond the scope of this paper.

We set up the model when debt managers do not buyback debt at the end of each period, we show how full commitment gives rise to a different kind of interest rate twisting, we outline how to use condensed PEA to solve for optimal fiscal policy and we show the behavior of the model. Since we follow closely the analysis of sections 2 and 3 we omit some details and focus on the differences.

The economy is as before except the government budget constraint is now

$$b_{N,t-N}^{N\text{BB}} = \tau_t (1-x_t) - g_t + p_{N,t} b_{N,t}^{N\text{BB}}$$ \hfill (28)

so that the payment obligations of the government at t are the amount of bonds issued at $t-N$.

We include the debt limits

$$M \leq b_{N,t}^{N\text{BB}} \sum_{i=1}^{N} \beta^i \leq M$$ \hfill (29)

Again, this limit mimicks the value of the newly issued debt at steady state prices: if the government issued b_N bonds at all periods it would have b_N units of bonds of maturities 1,2,...,N outstanding so the total value of debt at steady state would be $\sum_{i=1}^{N} \beta^i b_N^{N\text{BB}}$. The budget constraint of the household’s problem changes in a parallel way.

5.1 Optimal Policy with Maturing Debt

Substituting in equilibrium bond prices and wages net of taxes (28) becomes

s.t. $b_{N,t-N}^{N\text{BB}} \ u_{t,c} = S_t + \beta^N E_t (u_{t,c+N}) b_{N,t}^{N\text{BB}}$ \hfill (30)

The Ramsey problem is now to maximize utility (2) over choices of $\{c_t,b_{N,t}^{N\text{BB}}\}$ subject to this constraint and debt limits (29) for all t. The Lagrangian is

$$L = E_0 \sum_{t=0}^{\infty} \beta^t \left\{ u(c_t) + v(x_t) + \lambda_t \left[S_t + \beta^N u_{t,c+t+N} b_{N,t}^{N\text{BB}} - b_{N,t-N}^{N\text{BB}} u_{t,c} \right]
ight\}$$

$$+ \nu_{1,t} \left(M^{N\text{BB}} - b_{N,t}^{N\text{BB}} \right) + \nu_{2,t} \left(b_{N,t}^{N\text{BB}} - M^{N\text{BB}} \right)$$

13Conversations with debt managers suggest some combination of transaction costs, a desire to create liquid secondary markets at most maturities or worries over refinancing risk. For simplicity we rule out a third possibility - governments choosing to only buy back a certain proportion of outstanding debt.
where \(\lambda_t \) is the Lagrange multiplier associated with (30), \(\nu_{1,t} \) and \(\nu_{2,t} \) are the ones associated with the debt limits and \(MNBB \equiv \sum_{i=1}^{N} \beta^{t-i} - 1 \).

The first-order conditions with respect to \(c_t \) and \(b_{NBB,t-N} \) are

\[
\begin{align*}
uc_t - vx_t &+ \lambda_t (uc_{ct,t} + uc_t + vx_{xt,t} (ct + gt) - vx_t) \\
+ &u_{cc,t} (\lambda_{t-N} - \lambda_t) b_{NBB,t-N} = 0
\end{align*}
\]

(31)

\[
E_t (uc_{ct+N} \lambda_{t+N}) = \lambda_t E_t (uc_{ct+N}) + \nu_{2,t} - \nu_{1,t}
\]

(32)

with \(\lambda_{-1} = ... = \lambda_{-N} = 0 \).

In short, these FOC have two differences relative to the buyback case: in equation (31) we now have \((\lambda_{t-N} - \lambda_t) \) instead of \((\lambda_{t-N} - \lambda_{t-N+1}) \) and we now have \(\lambda_{t+N} \) instead of \(\lambda_{t+1} \) in the martingale condition (32).14

5.2 No Uncertainty and No Buyback

Let us now consider the no uncertainty case when \(g_t = \bar{g} \). Proceeding in an analog way as in the no buyback case of section 2.2 we could write the implementability constraint as

\[
\sum_{t=0}^{\infty} \beta^{t} \frac{uc_t}{uc_{0}} S_t = \sum_{i=1}^{N} b_{NBB,i} p_{N-i,0} , \quad \text{or}
\]

\[
\sum_{t=0}^{\infty} \beta^{t} S_t = \sum_{i=1}^{N} b_{NBB,i} \beta^{N-i} uc_{N-i}
\]

(33)

(34)

for \(p_{0,t} = 1 \). Bonds issued in periods \(i = -1, -2, ..., -N \) appropriately appear in the right side of the above constraint as what matters now is the total value of debt initially.

Let us consider the problem of maximizing utility when (34) is the sole implementability constraint. If the government is in debt \(b_{NBB,t-N} > 0 \) for all \(i = 1, ..., N \) it is clear that in this case interest rate twisting will involve changing interest rates in the first \(N-1 \) periods hence the government will promise to cut taxes in all periods between \(t = 0, ..., N-1 \). The FOC for consumption indicates that the tax cut will be larger for periods \(t = 0, ..., N-1 \) where the maturing debt \(b_{NBB,t-N} \) is larger. Therefore tax cuts now are permanent, they last \(N \) periods. For \(t \geq N \) consumption and taxes are constant.

But assuming that (34) is the sole implementability constraint as we did in the previous paragraph is not correct for our model. It would be correct in a slightly different model, where the debt limits would be in terms of the total value of debt, for example if debt limits would be

\[
M^{MV} \leq \sum_{i=1}^{N} b_{NBB,i} p_{N-i,t} \leq M^{MV}
\]

(35)

14 In the case of no buyback assuming independent powers would not simplify the analysis in terms of reducing the state space, one would still need \(N \) lags of \(b_{N} \) as state variables.
Take for simplicity the case $N = 2$. It is clear that the optimal allocation described in the previous paragraph can be implemented for bond issuances satisfying $b_{N,t} = 2 - i + 1 - N$. Given initial conditions this provides a difference equation on b_N that satisfies the period-t budget constraint (30) and the value of debt limits if M^{MV} and M^{IV} were sufficiently large in absolute value.

But for our model (34) is sufficient not for an equilibrium. This is perhaps surprising, as we think that without uncertainty and one asset one can always complete the markets for sufficiently high debt limits. To see this point notice that for the optimal allocation described above the surplus is constant, equal to a level, say S, for all $t \geq N$. The bonds that would satisfy the period-t budget constraint satisfy $b_{N,t-2} + \beta b_{N,t-1} = \frac{S}{1-\beta}$ for all $t = N, N+1, ...$ This path for bonds would satisfy the difference equation

$$b_{N,t} = \frac{S}{1-\beta} - \beta^{-1} b_{N,t-1}, \quad t = N, N+1, ...$$

which in general is an unstable difference equation in $b_{N,t}$. Normally the values of $b_{N,t}$ satisfying this equation will explode geometrically to plus and minus infinity, alternating sign. The sequence that is compatible with non explosive wealth of the government implies that the debt limits (29) are violated, therefore (34) is not sufficient for an equilibrium.

The intuition that one asset completes the markets for no uncertainty if the debt limits are sufficiently loose is only right if the debt limits are in terms of the value of debt, but not in terms of the actual asset issued. Bond issuance each period in absolute value go to infinity, constant wealth is only achieved because of the alternation in signs of b_i each period. Of course, one modelling solution would be to assume that debt limits are in terms of the value of debt as in (35), but we think limits on bonds as (29) are relevant. After all the bond markets are extremely concerned with gross issuance of bonds each period.

This argument shows that with long bonds we can not use (34) as the only implementability condition, we need to keep the budget constraint (30) in all periods in the analysis.

The following result shows the actual behavior of optimal policy. Essentially, we show that optimal policy induces higher tax volatility for two reasons: i) there are cycles of length N, ii) interest rate twisting is permanent, the reduction in taxes lasts N periods.

Result 2. Assume $b_{N,i} > 0$ for all $i = 1, ..., N$. Optimal policy for the model in this section is that there are cycles of order N in taxes and in bonds. More precisely

$$\tau_i = \tau_{tN+i}, \quad i = N, ..., 2N-1 \text{ for all } t = 1, 2, ...$$

and

$$b_{N,t} = b_{N,tN+i}, \quad i = 0, ..., N-1, \text{ for all } t = 1, 2, ...$$

Assume further the standard utility function where higher λ (in a complete markets case) would imply lower taxes, as for example happens with the utility (16), then

$$\tau_{i+N} > \tau_i, \quad i = 0, ..., N-1$$

21
Furthermore, if \(b_{2,-2}^{NBB} > b_{2,-1}^{NBB} \) then \(\tau_0 < \tau_1 \)

Proof

We provide the details for the proof in the case \(N = 2 \), the extension to the case of general \(N \) is trivial.

Consider the case \(N = 2 \). It is clear from the martingale condition (32) that

\[
\begin{align*}
\lambda_t &= \lambda_0 \text{ for all } t > 0, \ t \text{ even} \\
\lambda_t &= \lambda_1 \text{ for all } t > 1, \ t \text{ odd}
\end{align*}
\]

Therefore

\[
\begin{align*}
u_{c,t} - v_{x,t} + \lambda_0 (u_{cc,t} c_t + u_{c,t} + v_{xx,t} (c_t + \gamma) - v_{x,t}) &= 0 \text{ for all } t \geq 2, \ t \text{ even} \\
u_{c,t} - v_{x,t} + \lambda_1 (u_{cc,t} c_t + u_{c,t} + v_{xx,t} (c_t + \gamma) - v_{x,t}) &= 0 \text{ for all } t \geq 3, \ t \text{ odd}
\end{align*}
\]

notice the only difference between even and odd is in the lagrange multiplier \(\lambda \). This proves

\[
\begin{align*}
c_t &= c_2, \ \tau_t = \tau_2 \text{ for all } t > 2, \ t \text{ even} \\
c_t &= c_3, \ \tau_t = \tau_3 \text{ for all } t > 3, \ t \text{ odd}
\end{align*}
\]

The budget constraint (30) can be rolled forward as follows

\[
b_{2,t-2}^{NBB} = S_t + \beta^2 \frac{u_{c,t} + u_{c,t}}{u_{c,t}} S_{t+2} + \beta^4 \frac{u_{c,t} + 4u_{NBB}}{u_{c,t}} b_{N,t}^{NBB} = \ldots
\]

Using debt limits we conclude

\[
b_{2,t-2}^{NBB} = \sum_{j=0}^{\infty} \beta^{2j} \frac{u_{c,t} + 2j}{u_{c,t}} S_{t+2j} \text{ for all } t = 0, 1, \ldots
\]

This combined with (38) implies

\[
\begin{align*}
b_{0}^{NBB} &= b_{1}^{NBB} = \frac{S_2}{1 - \beta^2} \text{ for all } t \geq 0, \ t \text{ even} \\
b_{1}^{NBB} &= b_{1}^{NBB} = \frac{S_3}{1 - \beta^2} \text{ for all } t \geq 1, \ t \text{ odd}
\end{align*}
\]

The only statement left to prove are the tax cuts in periods \(t = 0, 1 \). For periods \(t = 0, 1 \) we have

\[
\begin{align*}
u_{c,0} - v_{x,0} + \lambda_0 (u_{cc,0} c_0 + u_{c,0} + v_{xx,0} (c_0 + \gamma) - v_{x,0}) - u_{cc,0} \lambda_0 b_{2,-2}^{NBB} &= 0 \\
u_{c,1} - v_{x,1} + \lambda_1 (u_{cc,1} c_1 + u_{c,1} + v_{xx,1} (c_1 + \gamma) - v_{x,1}) - u_{cc,1} \lambda_1 b_{2,-1}^{NBB} &= 0
\end{align*}
\]

Notice that the difference with (37) for \(t > 1 \) is the presence of the terms \(u_{cc,0} \lambda_0 b_{2,-2}^{NBB} \) and \(u_{cc,1} \lambda_1 b_{2,-1}^{NBB} \). These are clearly negative, implying that for the considered utility functions we have

\[
\begin{align*}
\tau_2 &> \tau_0 \\
\tau_3 &> \tau_1
\end{align*}
\]

The statement in the last line follows immediately from the last FOC written. ■

These results could be easily extended to the case of uncertainty only in period \(t = 1 \) as in section 2.3.1, to show that if an adverse shock to \(g \) occurs taxes are lowered for the next \(N - 1 \) periods and there is a cycle of order \(N \).
5.3 Numerical solutions

To write the model recursively we observe that the Lagrangean can be rewritten as

\[
L = E_0 \sum_{t=0}^{\infty} \beta^t \left\{ u(c_t) + v(x_t) + \lambda_t S_t + u_{c,t} (\lambda_{t-N} - \lambda_t) b_{N,t-N}^{\text{NBB}} + \nu_{1,t} (M_{NBB}^{\text{NBB}} - b_{N,t}^{\text{NBB}}) + \nu_{2,t} \left(b_{N,t}^{\text{NBB}} - M_{NBB}^{\text{NBB}} \right) \right\}
\]

for \(\lambda_{-1} = \ldots = \lambda_{-N} = 0 \).

In a recursive formulation we would have the \(2N + 1 \) states \(\left[\lambda_{t-1}, \ldots, \lambda_{t-N}, b_{N,t-1}^{\text{NBB}}, \ldots, b_{N,t-N}^{\text{NBB}}, g_t \right] \) just as before.

We use condensed PEA again. The FOC show that this problem is easier to solve as there are only two expectations to approximate, \(E_t (u_{c,t+N} \lambda_{t+N}) \), and \(E_t (u_{c,t+N}) \). We choose the core \(X_t^{\text{core}} = (\lambda_{t-N}, b_{N,t-N}^{\text{NBB}}, g_t) \). We keep the same tolerance level as in the the model with buy back. Table 6 summarizes the number of linear combinations we needed to approximate our expectations. Relative to Section 3.3 the required state space is larger - in some cases two linear combinations of residuals are needed. Effectively this just means a total of five state variables is enough. The condensed PEA still dramatically reduces the state space and it makes computation of a non-linear solution feasible.

Figure 8 shows the impulse response functions for a 10 period bond and no buyback with a calibration as in previous sections. We compare the policy with the case of a one and 10 period bond and buyback. The figure is for the case when the government initially has no debt, so it is comparable to Figure 1. We see from the impulse response functions for tax rates that varying the maturity of the bond does affect optimal policy, even for initial zero debt.

\[\text{INSERT FIGURE 8} \]

In the buyback case of sections 2 and 3, when initial debt is zero, \(b_{N,-1} = 0 \), Figure 1 shows that the government does not promise a cut in taxes. Only when the government is in debt \(b_{N,-1} > 0 \) (or has assets) as in Figure 2 (or 4) we observed the promise to cut (increase) taxes in \(N-1 \) periods. But we see in Figure 8 that even for the case of zero initial debt the behavior of taxes is quite interesting under buyback. Taxes increase on impact, the response is decreasing for \(N-1 \) periods, then it jumps at the time of maturity to start going back down after that and so on. The reason for this behavior is the following. The positive but decreasing response for the first \(N-1 \) period is standard in optimal taxation models with serially correlated shocks, it would also occur under complete markets: the higher \(g_t \) on impact indicates that \(g_t \) will also be higher in the next periods, and this generates higher taxes for the next few periods for the utility function considered. The jump in the response function at lag \(N \) is a reflection of the fact that there are cycles of order \(N \), as suggested by Result 2 and as can be seen directly from the martingale condition (32). Strictly speaking \(\lambda \) is not a risk-adjusted martingale but one can say that it is a risk-adjusted martingale of cycle \(N \).\(^{15}\) The initial high and decreasing response echoes \(N \) periods later, this is because a high \(g_t \)

\(^ {15}\) Formally we could say that letting \(\xi^*_i = \lambda_{i+t} \) for \(i = 0, \ldots, N-1 \), each \(\xi^*_i \) is a risk-adjusted martingale.
bumps up \(\lambda_t \) so it is optimal to set higher \(\lambda_{t+N} \) and so on. Even if \(g_{t+N} \) may be close to its mean, the effect of today’s shock on \(\lambda_{t+N} \) drives taxes back up at \(N \) lags and the cycle starts again.

The intuitive reason that there are cycles of order \(N \) is the following. One could think of writing the budget constraints under incomplete markets in discounted form as

\[
\sum_{j=0}^{\infty} \beta^j \frac{u_{c,t+j}}{u_{c,t}} \tilde{S}_{t+j} = \sum_{i=1}^{N} b_{N,t-i}^{BB} \Pi_{N-i,t} \quad \text{for all } t \tag{40}
\]

These discounted constraints hold in all periods if and only if the period–\(t \) budget constraints (30) hold. But as should be clear from the proof of Result 2 this is not a very relevant condition: even if (40) holds we would easily violate the debt limits (29), since solutions of this equation for \(b_N \) given a sequence of surpluses usually generates an unstable solution for issued bonds.

We could instead write the budget constraints as follows:

\[
\sum_{j=0}^{\infty} \beta^j \frac{u_{c,t+N+j}}{u_{c,t}} \tilde{S}_{t+N+j} = b_{N,t-N}^{BB}, \quad \text{for all } t
\]

These are also necessary and sufficient for (30) , with the advantage that they guarantee that if we use these conditions to solve for the \(b_{N} \)’s given surpluses bonds do not go to infinity. These conditions show that what is relevant is the link between today’s issued bonds and the surpluses in \(N, 2N, 3N, \ldots \) periods from now. If today we have a bad shock and we issue \(N \)–period bonds, when these bonds mature \(N \) periods from now there will be a need for higher taxes and a higher deficit, so \(b_{N,t+N} \) will increase hence there will be a need for higher taxes and higher deficits in \(2N \) periods and so on. Therefore it is reasonable that there is a cycle of period \(N \) and that optimal policy has the shape displayed in Figure 8. The optimal response to an unexpected shock is to promise future taxes that in part accomodate the additional debt servicing in the periods when today’s debt will have to be repaid.

Result 2 suggests that taxes in the first \(N - 1 \) periods should be lower if the government is in debt. This suggests that optimal policy will be to lower taxes during the first cycle of \(N \) periods relative to later cycles. An additional role of commitment is indeed to promise a cut in taxes during the first cycle relative to the cycles later down the line. This is why in Figure 9, which looks at the case of initial debt, the main difference with Figure 8 is that the second peak in taxes is lower than the first peak, while the opposite is true in Figure 8.

\[\text{HERE FIGURE 9}\]
\[\text{HERE TABLE 7}\]

Table 7 shows summary statistics for the model with no buyback and bonds of varying maturities. The results are exceptionally similar to the case of buyback. Because debt is held to maturity each period the government now issues fewer bonds per period. As in the no buyback case the short sample second moments do show more volatility of tax rates, as shown in Figure 10.

\[\text{INSERT FIGURE 10}\]
6 Conclusions

This paper has had two interrelated aims. The first has been to study optimal fiscal policy when governments issue bonds of long maturity. The second has been to propose a general method for solving models with a large state space - the condensed PEA.

A number of additional considerations arise when governments issue long term bonds. If the government inherits debt it has an incentive to twist interest rates to minimize costs of funding debt. This is achieved by violating tax smoothing and promising a tax cut in \(N - 1 \) periods, when the existing bonds mature. A typical debt management concern such as lowering the cost of debt shapes the path of fiscal policy. This suggests that it is important to consider debt management and fiscal policy jointly. This commitment to cut taxes leads to time inconsistency.

The model with long bonds helps to clarify the role of commitment in models of fiscal policy and incomplete markets. In the case of short bonds the change in taxes needed to adjust to a shock and the promise to cut taxes at time of maturity are confounded, what is observed is that taxes increase on impact much less if the government is in debt.

This commitment to cut taxes leads to a potentially very large state space of dimension \(2N+1 \). Using the condensed PEA enables us to solve this model accurately with a much reduced state space allowing for computation of non-linear numerical solutions.

We have also proposed an alternative model of government policy, one where a central bank determines interest, and a fiscal authority separately decides on debt and taxes. This model of independent powers is of interest per se, as policy authorities may not be able to coordinate as much as is required to implement the full commitment solution. Also, it does not display policies where promises that will be implemented very far in the future matter for today’s solution. As such it serves to highlight the role of commitment and to look at a solution when state space is not enormous.

We started with the case usually considered in the literature where government buys back the existing stock of debt each period. To get closer to actual practice we study the case where government bonds are left in circulation until maturity. This model gives rise to even more tax volatility due to debt management concerns: promises to cut taxes for interest twisting purposes are now permanent and policy creates \(N \)-period cycles, giving rise to even more tax volatility.

There is little quantitative difference in fiscal policy or economic allocations at steady state second moments as the maturity of debt is varied, justifying the observation in Table 1 that similar countries may have very different average maturity of debt. The main difference is in the steady state of debt: longer maturities imply lower asset accumulation because long bonds provide a volatile deficit if the government holds assets. However, for second moments computed with short run moments we do find more tax volatility with long bonds.

A number of further issues remain. Faraglia, Marcet, Oikonomou and Scott (2011) show in the context of a sticky price nominal model that the average maturity of debt exerts an important influence on fiscal policy. We have throughout this paper assumed the government can issue only one bond and have varied its maturity. In order to fully understand debt management we need to consider the case when the government can issue several bonds of different maturity and choose the optimal portfolio. Another important issue is to consider why governments do not buyback
debt – presumably because of concerns over transaction costs. We have abstracted from crucial elements of actual debt management practice such as refinancing risk, rollover risk, transaction costs, default, etc., We hope the methodologies of this paper will enable us to provide a detailed study of optimal debt management and to introduce some of these features in the analysis.
References

mimeo

Economic Journal, 118, 477–498

Banking* 33 669-728
Table 1 - Average Maturity Government Debt 2010

<table>
<thead>
<tr>
<th>Country</th>
<th>Average Maturity (Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK</td>
<td>13.7</td>
</tr>
<tr>
<td>Denmark</td>
<td>7.9</td>
</tr>
<tr>
<td>Greece</td>
<td>7.7</td>
</tr>
<tr>
<td>Italy</td>
<td>7.2</td>
</tr>
<tr>
<td>Austria</td>
<td>7</td>
</tr>
<tr>
<td>France</td>
<td>6.9</td>
</tr>
<tr>
<td>Ireland</td>
<td>6.8</td>
</tr>
<tr>
<td>Spain</td>
<td>6.7</td>
</tr>
<tr>
<td>Switzerland</td>
<td>6.7</td>
</tr>
<tr>
<td>Portugal</td>
<td>6.5</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>6.4</td>
</tr>
<tr>
<td>Sweden</td>
<td>6.4</td>
</tr>
<tr>
<td>Germany</td>
<td>5.8</td>
</tr>
<tr>
<td>Belgium</td>
<td>5.6</td>
</tr>
<tr>
<td>Japan</td>
<td>5.4</td>
</tr>
<tr>
<td>Netherlands</td>
<td>5.4</td>
</tr>
<tr>
<td>Canada</td>
<td>5.2</td>
</tr>
<tr>
<td>Poland</td>
<td>5.2</td>
</tr>
<tr>
<td>Australia</td>
<td>5</td>
</tr>
<tr>
<td>Norway</td>
<td>4.9</td>
</tr>
<tr>
<td>US</td>
<td>4.8</td>
</tr>
<tr>
<td>Finland</td>
<td>4.3</td>
</tr>
<tr>
<td>Hungary</td>
<td>3.3</td>
</tr>
</tbody>
</table>

Source: OECD, The Economist

Table 2: Model with buyback - linear combinations introduced with Condensed PEA

<table>
<thead>
<tr>
<th>N</th>
<th>$2N + 1$</th>
<th># of linear comb.</th>
<th>Φ_λ</th>
<th>Φ_{ucN}</th>
<th>Φ_{ucS-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td></td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>$-$</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>$-$</td>
</tr>
<tr>
<td>10</td>
<td>21</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>$-$</td>
</tr>
<tr>
<td>15</td>
<td>31</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>$-$</td>
</tr>
<tr>
<td>20</td>
<td>41</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Note: recall that N denotes maturity and $2N + 1$ is the dimension of the state vector. In all cases X^{core} has three variables. "# of linear comb" refers to how many linear combinations of X^{out} had to be added to
satisfy the accuracy criterion. We denote each expectation to be approximated by $\Phi_{\lambda} = E_t (u_{c,t+N} \lambda_{t+1})$, $\Phi_{ucN} = E_t (u_{c,t+N})$ and $\Phi_{ucN-1} = E_t (u_{c,t+N-1})$

| Table 3: Model with buyback - accuracy measures in Condensed PEA |
|---------------|-------------|-------------|
| N | adding 1 linear comb | adding 2d linear comb |
| | Φ_{λ} | Φ_{ucN} | Φ_{ucN-1} | Φ_{λ} | Φ_{ucN} | Φ_{ucN-1} |
| 2 | 0.9208 | 0.7533 | 0.8669 | 0.9209 | 0.7535 | 0.8669 |
| # lin comb in | 0 | 0 | 0 | 0 | 1 | 0 |
| R_{aug}^2 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| dist | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 5 | 0.9069 | 0.5022 | 0.5751 | 0.9070 | 0.5026 | 0.5754 |
| # lin comb in | 0 | 0 | 0 | 0 | 1 | 0 |
| R_{aug}^2 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| dist | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 10 | 0.8911 | 0.2630 | 0.2991 | 0.8909 | 0.2632 | 0.2993 |
| # lin comb in | 0 | 0 | 0 | 0 | 1 | 0 |
| R_{aug}^2 | 0.0000 | 0.0002 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| dist | 0.0000 | 0.0002 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 15 | 0.8814 | 0.1422 | 0.1609 | 0.8831 | 0.1446 | 0.1635 |
| # lin comb in | 0 | 0 | 0 | 1 | 1 | 0 |
| R_{aug}^2 | 0.0001 | 0.0002 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| dist | 0.0001 | 0.0002 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 20 | 0.8751 | 0.0788 | 0.0868 | 0.8771 | 0.0807 | 0.0907 |
| # lin comb in | 0 | 0 | 0 | 1 | 1 | 1 |
| R_{aug}^2 | 0.0002 | 0.0003 | 0.0002 | 0.0000 | 0.0000 | 0.0000 |
| dist | 0.0002 | 0.0003 | 0.0002 | 0.0000 | 0.0000 | 0.0000 |

Note: see Note of previous Table. R_{aug}^2 and dist are defined in section 3.3.
Table 4: Second Moments, Steady State

Model: Ramsey with buyback

<table>
<thead>
<tr>
<th>(N)</th>
<th>(c)</th>
<th>(y)</th>
<th>(\tau)</th>
<th>(\text{deficit})</th>
<th>(R_N)</th>
<th>(\text{MV} = p_N b_N)</th>
<th>(\lambda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>52.60</td>
<td>70.11</td>
<td>0.243</td>
<td>0.42</td>
<td>2.02</td>
<td>-24.68</td>
<td>0.057</td>
</tr>
<tr>
<td>5</td>
<td>52.58</td>
<td>70.08</td>
<td>0.245</td>
<td>0.32</td>
<td>2.02</td>
<td>-19.21</td>
<td>0.058</td>
</tr>
<tr>
<td>10</td>
<td>52.56</td>
<td>70.06</td>
<td>0.246</td>
<td>0.25</td>
<td>2.03</td>
<td>-16.28</td>
<td>0.058</td>
</tr>
<tr>
<td>20</td>
<td>52.54</td>
<td>70.05</td>
<td>0.247</td>
<td>0.17</td>
<td>2.03</td>
<td>-12.46</td>
<td>0.059</td>
</tr>
<tr>
<td>std</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3.49</td>
<td>0.35</td>
<td>0.044</td>
<td>1.46</td>
<td>0.5</td>
<td>27.26</td>
<td>0.013</td>
</tr>
<tr>
<td>5</td>
<td>3.48</td>
<td>0.37</td>
<td>0.043</td>
<td>1.57</td>
<td>0.4</td>
<td>30.96</td>
<td>0.013</td>
</tr>
<tr>
<td>10</td>
<td>3.48</td>
<td>0.38</td>
<td>0.044</td>
<td>1.59</td>
<td>0.3</td>
<td>31.97</td>
<td>0.013</td>
</tr>
<tr>
<td>20</td>
<td>3.48</td>
<td>0.39</td>
<td>0.044</td>
<td>1.66</td>
<td>0.2</td>
<td>32.84</td>
<td>0.014</td>
</tr>
</tbody>
</table>

Note: to provide a more interpretable quantity we report annualized interest rates instead of bond prices, namely \(R_N = \left(\frac{1}{N} - 1\right) 100\).

Table 5: Second Moments, Steady State

Model: Independent Powers

<table>
<thead>
<tr>
<th>(N)</th>
<th>(c)</th>
<th>(y)</th>
<th>(\tau)</th>
<th>(\text{deficit})</th>
<th>(R_N)</th>
<th>(\text{MV} = p_N b_N)</th>
<th>(\lambda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>52.60</td>
<td>70.10</td>
<td>0.244</td>
<td>0.41</td>
<td>2.02</td>
<td>-23.54</td>
<td>0.057</td>
</tr>
<tr>
<td>5</td>
<td>52.58</td>
<td>70.08</td>
<td>0.245</td>
<td>0.32</td>
<td>2.02</td>
<td>-19.49</td>
<td>0.058</td>
</tr>
<tr>
<td>10</td>
<td>52.56</td>
<td>70.07</td>
<td>0.246</td>
<td>0.26</td>
<td>2.03</td>
<td>-16.40</td>
<td>0.058</td>
</tr>
<tr>
<td>20</td>
<td>52.54</td>
<td>70.05</td>
<td>0.247</td>
<td>0.17</td>
<td>2.03</td>
<td>-12.31</td>
<td>0.059</td>
</tr>
<tr>
<td>std</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3.49</td>
<td>0.34</td>
<td>0.044</td>
<td>1.43</td>
<td>0.5</td>
<td>27.88</td>
<td>0.013</td>
</tr>
<tr>
<td>5</td>
<td>3.48</td>
<td>0.36</td>
<td>0.044</td>
<td>1.51</td>
<td>0.4</td>
<td>31.11</td>
<td>0.013</td>
</tr>
<tr>
<td>10</td>
<td>3.48</td>
<td>0.37</td>
<td>0.044</td>
<td>1.54</td>
<td>0.3</td>
<td>32.20</td>
<td>0.013</td>
</tr>
<tr>
<td>20</td>
<td>3.49</td>
<td>0.37</td>
<td>0.044</td>
<td>1.56</td>
<td>0.2</td>
<td>33.20</td>
<td>0.014</td>
</tr>
</tbody>
</table>

Table 6: Model without buyback

\[N \quad 2N + 1 \quad \# \text{lin. comb. in} \quad \Phi_\Lambda \quad \Phi_{bcN} \]

<table>
<thead>
<tr>
<th>(N)</th>
<th>(2N + 1)</th>
<th># lin. comb. in</th>
<th>(\Phi_\Lambda)</th>
<th>(\Phi_{bcN})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>21</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>31</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>41</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Note: same as in Table 2 except we denote expectations to be approximated by $\Phi_\lambda = E_t (u_{c,t+N}\lambda_{t+N})$, $\Phi_{uc,N} = E_t (u_{c,t+N})$.

Table 7: No Buy Back Model with Different Maturities

<table>
<thead>
<tr>
<th>maturity</th>
<th>c</th>
<th>y</th>
<th>(\tau)</th>
<th>deficit</th>
<th>(R_N)</th>
<th>MV</th>
<th>(\lambda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>52.60</td>
<td>70.11</td>
<td>0.243</td>
<td>0.43</td>
<td>2.02</td>
<td>-24.69</td>
<td>0.057</td>
</tr>
<tr>
<td>5</td>
<td>52.57</td>
<td>70.07</td>
<td>0.246</td>
<td>0.28</td>
<td>2.02</td>
<td>-17.43</td>
<td>0.058</td>
</tr>
<tr>
<td>10</td>
<td>52.55</td>
<td>70.05</td>
<td>0.247</td>
<td>0.22</td>
<td>2.03</td>
<td>-14.53</td>
<td>0.058</td>
</tr>
<tr>
<td>20</td>
<td>52.54</td>
<td>70.05</td>
<td>0.247</td>
<td>0.19</td>
<td>2.03</td>
<td>-12.77</td>
<td>0.059</td>
</tr>
<tr>
<td>std</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3.49</td>
<td>0.35</td>
<td>0.044</td>
<td>1.46</td>
<td>0.5</td>
<td>27.26</td>
<td>0.013</td>
</tr>
<tr>
<td>5</td>
<td>3.47</td>
<td>0.40</td>
<td>0.044</td>
<td>1.67</td>
<td>0.4</td>
<td>32.26</td>
<td>0.014</td>
</tr>
<tr>
<td>10</td>
<td>3.48</td>
<td>0.41</td>
<td>0.044</td>
<td>1.72</td>
<td>0.3</td>
<td>33.98</td>
<td>0.014</td>
</tr>
<tr>
<td>20</td>
<td>3.50</td>
<td>0.41</td>
<td>0.046</td>
<td>1.71</td>
<td>0.2</td>
<td>33.81</td>
<td>0.015</td>
</tr>
</tbody>
</table>
Figure 1: Responses to a shock in g_t, Ramsey with buyback maturities 1 and 10
Positive initial debt, $b_{N,t-1} = 0$
Figure 2: Responses to a shock in g_t, Ramsey with buyback maturities 1 and 10
Positive initial debt, $b_{N,t-1} = 0.5y^*/\beta^N$
Figure 3: Responses of taxes to a shock in g_t, Ramsey with buyback maturities 1, 5, 10 and 20
Positive initial debt, $b_{N,t-1} = 0.5y^*/\beta^N$.

\[T \text{TAXES} \]
\[N \text{NUMBEROFBONDS} \]
Figure 4: Responses to a shock in g_t, Ramsey with buyback maturities 1 and 10
Positive initial assets, $b_{N,t-1} = -0.5y^*/\beta^N$
Figure 5: Persistence Measures
Ramsey with buyback
maturities 1 and 10
Figure 6: Response to a shock in g_t
Independent Powers Model
Positive Initial debt, $b_{N-1} = 0.5y^*/\beta^N$
Figure 1:
Figure 7: Tax Volatility at different horizons
Ramsey with Buyback and Independent Powers

Optimal model with buyback and Independent power model
Variability of taxes
$t=40$

Optimal model with buyback and Independent power model
Variability of taxes
$t=200$

Optimal model with buyback and Independent power model
Variability of taxes
Long Run

<table>
<thead>
<tr>
<th>mat2</th>
<th>mat5</th>
<th>mat10</th>
<th>mat15</th>
<th>mat20</th>
</tr>
</thead>
<tbody>
<tr>
<td>tax</td>
<td>tax_ipm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

40
Figure 8: Response to a shock in g_t
No buyback Model
Zero Initial debt, $b^N_{N-1} = ... = b^N_{N-N} = 0$
Figure 9: Response to a shock in g_t

No buyback Model
Positive Initial debt, $b_{N,-1} = \frac{0.5y_{t+\infty}}{\beta^N}$
Figure 10: Buy Back and no Buy Back Model: Tax Volatility

Optimal model with and without buy back
Variability of taxes
t=40

Optimal model with and without buy back
Variability of taxes
t=200

Optimal model with and without buy back
Variability of taxes
long run