Endogenous Persistence in an Estimated DSGE Model under Imperfect Information
P. Levine, J. Pearlman, G. Perendia, B. Yang

Discussion by Eleni ILIOPULOS

PSE and CEPREMAP

March 2010, Monfispol meeting
The paper in short

- Consider a general NK framework
- Compares the standard asymmetric informational approach with a symmetric one:
 - private agents knowing more than the econometricians estimating a model.
 - what about the "informational consistency principle"? → Same imperfect info for both econometricians and agents.
- Discuss the role of expectations.
- Empirically investigate the relevance of the above assumptions.
 - with Bayesian maximum likelihood
 - first providing the software; then incorporating into the Dynare framework.
In line with the (Miller, 2009) agenda on future GE macroeconomics:
- analyzing the impact of information asymmetries
- rational expectations and the implications for aggregate decisions

Confronting some of DSGE modelling "Achille’s heels"

Introduces a rule on expectations so as to match with data

Provides tools for estimating DSGE models with Bayesian Maximum-likelihood under very general informational assumptions.
Traditionally strong separation between rational vs adaptive vs static expectations.

RE: agents decisions are best responses to the optimal responses by others.

Optimal behaviour at the roots of forecasts.

Generally, with RE in agents’ behaviour, $E_{t-1}x_t = x_t$

based on a great deal of knowledge!

(RE behaviours can also be influenced by sticky diffusion of info $x_t = E_{t-j}x_t^*$, see Mankiw and Reis, 2001)
Limitations on knowledge

Explicit forecast (exogenous) rule: OLS.

Rule for estimating unknown parameters and updating the estimates as data are accumulated (e.g., recursive OLS)

The current state depend on expectations

Equilibrium is based on the concept of e-stability and can converge to the RE equilibrium.

Not trivial: there may be a wedge between determinacy and learnability conditions (Bullard, Eusepi 2009).
Rational inattention

- Agents have limited information processing capacity.
- They have problems in extracting signals (human information; costly investigation; wiring capacity.. Sims, 2002).
- In practice, there is a constraint on the flow of information. With finite capacity, an optimal social planner could (optimally) choose a signal that reduce the uncertainty of the state (Luo and Young, 2009).
- Agents are rational but constrained → They behave as if observing a noisy measurement
- (Kalman) filter to describe the evolution of the information set (with optimal weight, Luo and Young, 2009)
Agents have much less info than the above
Base their forecasts on heuristics
Have a bias on the forecast. The bias evolves with a "learning" procedure
Expectations are eventually aggregated
Rational expectations with imperfect symmetric vs asymmetric info (Levine, Pearlman and Perendia, 2007)

The standard II RE model assumes agents to know more than econometricians → informational consistency problem.

The II RE model is thus solved both with symmetry and asymmetry assumptions on info (measurement errors on 2 vs all 3 observables)

It is possible to solve the model extending the Pearlman et al (1986) framework (with Kalman filtering)

Determinacy conditions don’t depend on the information set (≠ learning)
Expectations in this paper: behavioural model

- A share of agents form rational expectations and the remaining ones form adaptive expectations.
- Adaptive expectations depend on past observations and past expectations.
- Adaptive expectations are "dominated" by rational expectations.
- (Eventually, the system can be rewritten and solved with RE.)
Adaptive behaviours

- As in de Grauwe 2009, there are some behavioural assumption.

- $E^a_t \bar{q}_t^r = \bar{q}_t^r$ (as in RE) BUT

- Adaptive agents do not think that they are able to have better expectations than rational agents $\rightarrow E^a_t \bar{q}_t^{r+1} = E^a_t [E^r_t \bar{q}_t^{r+1}]$

- Rational agents are aware that they can form superior estimates to adaptive agents of \bar{q}_t^{a+1}.

- They also know: $E^r_t [E^a_t \bar{q}_t^{a+1}] = E^a_t \bar{q}_t^{a+1}$
Adaptive behaviours

- This creates "asymmetry" between rational and adaptive agents. But adaptive agents are eventually very rational.
- So, why don’t they eventually form rational expectations?
- May they be just rationally inattentive/uncapable to process info?
- Indeed, it is possible to encompass Luo and Young (2009) rational inattention model.
- Developing the linkage may build a bridge between rational and adaptive expectations literature
- Moreover, adaptive behaviours appear empirically significant (especially when combined with habit formation)
- Finally, the presence of informational symmetry helps improve the model to fit the data.